Skip to main content
Log in

A novel insight into the regulation of light-independent chlorophyll biosynthesis in Larix decidua and Picea abies seedlings

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Light-independent chlorophyll (Chl) biosynthesis is a prerequisite for the assembly of photosynthetic pigment–protein complexes in the dark. Dark-grown Larix decidua Mill. seedlings synthesize Chl only in the early developmental stages and their Chl level rapidly declines during the subsequent development. Our analysis of the key regulatory steps in Chl biosynthesis revealed that etiolation of initially green dark-grown larch cotyledons is connected with decreasing content of glutamyl-tRNA reductase and reduced 5-aminolevulinic acid synthesizing capacity. The level of the Chl precursor protochlorophyllide also declined in the developing larch cotyledons. Although the genes chlL, chlN and chlB encoding subunits of the light-independent protochlorophyllide oxidoreductase were constitutively expressed in the larch seedlings, the accumulation of the ChlB subunit was developmentally regulated and ChlB content decreased in the fully developed cotyledons. The efficiency of chlB RNA-editing was also reduced in the mature dark-grown larch seedlings. In contrast to larch, dark-grown seedlings of Picea abies (L.) Karst. accumulate Chl throughout their whole development and show a different control of ChlB expression. Analysis of the plastid ultrastructure, photosynthetic proteins by Western blotting and photosynthetic parameters by gas exchange and Chl fluorescence measurements provide additional experimental proofs for differences between dark and light Chl biosynthesis in spruce and larch seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A:

Net photosynthetic rate

ALA:

5-Aminolevulinic acid

Chl:

Chlorophyll

Chlide:

Chlorophyllide

chlLNB :

chlL, chlN, chlB genes

cpDNA:

Plastid DNA

DPOR:

Light-independent protochlorophyllide oxidoreductase

GluTR:

Glutamyl-tRNA reductase

LHC2:

Light-harvesting complexes associated with photosystem II

LPOR:

Light-dependent NADPH-protochlorophyllide oxidoreductase

Pchlide:

Protochlorophyllide

PLB:

Prolamellar body

RD:

Respiration rate

ФPSII:

Effective quantum yield of PSII

References

  • Alawady A, Grimm B (2005) Tobacco Mg protoporphyrin IX methyltransferase is involved in inverse activation of Mg porphyrin and protoheme synthesis. Plant J 41:282–290

    Article  PubMed  CAS  Google Scholar 

  • Armstrong GA (1998) Greening in the dark: light-independent chlorophyll biosynthesis from anoxygenic photosynthetic bacteria to gymnosperms. J Photochem Photobiol B Biol 43:87–100

    Article  CAS  Google Scholar 

  • Aronsson H, Sundqvist C, Dahlin C (2003) POR hits the road: import and assembly of a plastid protein. Plant Mol Biol 51:1–7

    Article  PubMed  CAS  Google Scholar 

  • Beck CF (2005) Signaling pathways from the chloroplast to the nucleus. Planta 222:743–756

    Article  PubMed  CAS  Google Scholar 

  • Böddi B, Lindsten A, Ryberg M, Sundqvist C (1989) On the aggregational states of protochlorophyllide and its protein complexes in wheat etioplasts. Physiol Plant 76:135–143

    Article  Google Scholar 

  • Cahoon AB, Timko MP (2000) Yellow-in-the-dark mutants of Chlamydomonas lack the ChlL subunit of light-independent protochlorophyllide reductase. Plant Cell 12:559–568

    Article  PubMed  CAS  Google Scholar 

  • Dawson RCM, Elliot DC, Elliot WH, Jones KM (1986) Data for biochemical research, 3rd edn. Oxford Science, Oxford

  • Drazic G, Bogdanovic M (2000) Gabaculine does not inhibit cytokinin-stimulated biosynthesis of chlorophyll in Pinus nigra seedlings in the dark. Plant Sci 154:23–29

    Article  PubMed  CAS  Google Scholar 

  • Eichacker LA, Soll J, Lauterbach P, Rüdiger W, Klein RR, Mullet JE (1990) In vitro synthesis of chlorophyll a in the dark triggers accumulation of chlorophyll a apoproteins in barley etioplasts. J Biol Chem 265:13566–13571

    PubMed  CAS  Google Scholar 

  • Fujita Y, Bauer CE (2003) The light-independent protochlorophyllide reductase: a nitrogenase-like enzyme catalyzing a key reaction for greening in the dark. In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook. Academic/Elsevier Science, London, pp 109-156

  • Gálová E, Böhmová B, Ševčovičová A (2000) Analysis of some barley chlorophyll mutants and their response to temperature stress. Photosynthetica 38:29–35

    Article  Google Scholar 

  • Hudák J, Gálová E, Zemanová L (2005) Plastid morphogenesis. In: Pessarakli M (ed) Handbook of photosynthesis. CRC Press/Taylor and Francis Group, Boca Raton/London, pp 221–245

  • Ilag L, Kumar AM, Soll D (1994) Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis. Plant Cell 6:256–275

    Article  Google Scholar 

  • Jiao Y, Lau OS, Deng XW (2007) Light-regulated transcriptional networks in higher plants. Nat Rev Genet 8:217–230

    Article  PubMed  CAS  Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137

    Google Scholar 

  • Karpinska B, Karpinski S, Hällgren JE (1997) The chlB gene encoding a subunit of light-independent protochlorophyllide reductase is edited in chloroplasts of conifers. Curr Genet 31:343–347

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Eichacker L, Rüdiger W, Mullet JE (1994) Chlorophyll regulates accumulation of the plastid-encoded chlorophyll protein P700 and D1 by increasing apoprotein stability. Plant Physiol 104:907–916

    Article  PubMed  CAS  Google Scholar 

  • Koski VM, Smith JHC (1948) The isolation and spectral absorption properties of protochlorophyll from etiolated barley seedlings. J Am Chem Soc 70:3558–3562

    Article  PubMed  CAS  Google Scholar 

  • Kruse E, Mock HP, Grimm B (1995) Reduction of coproporphyrinogen oxidase level by antisense RNA synthesis leads to deregulated gene expression of plastid proteins and affects the oxidative defense system. EMBO J 14:3712–3720

    PubMed  CAS  Google Scholar 

  • Kruse E, Grimm B, Beator J, Kloppstech K (1997) Developmental and circadian control of the capacity for delta- aminolevulinic acid synthesis in green barley. Planta 202:235–241

    Article  CAS  Google Scholar 

  • Kusumi J, Sato A, Tachida H (2006) Relaxation of functional constraint on light-independent protochlorophyllide oxidoreductase in Thuja. Mol Biol Evol 23:941–948

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Mariani P, De Carli EM, Rascio N, Baldan B, Casadoro G, Gennari G, Bodner M, Larcher W (1990) Synthesis of chlorophyll and photosynthetic competence in etiolated and greening seedlings of Larix decidua as compared with Picea abies. J Plant Physiol 137:5–14

    CAS  Google Scholar 

  • Masuda T, Takamiya K (2004) Novel insights into the enzymology, regulation and physiological functions of light-dependent protochlorophyllide oxidoreductase in angiosperms. Photosynth Res 81:1–29

    Article  PubMed  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu S, Kojima K, Igasaki T, Azumi Y, Shinohara K (2001) Inhibition of the light-independent synthesis of chlorophyll in pine cotyledons at low temperature. Plant Cell Physiol 42:868–872

    Article  PubMed  CAS  Google Scholar 

  • Nogaj LA, Srivastava A, van Lis R, Beale SI (2005) Cellular levels of glutamyl-tRNA reductase and glutamate-1-semialdehyde aminotransferase do not control chlorophyll synthesis in Chlamydomonas reinhardtii. Plant Physiol 139:389–396

    Article  PubMed  CAS  Google Scholar 

  • Papenbrock J, Grimm B (2001) Regulatory network of tetrapyrrole biosynthesis—studies for intracellular signalling involved in metabolic and developmental control of plastids. Planta 213:667–681

    Article  PubMed  CAS  Google Scholar 

  • Peer W, Silverthorne J, Peters J (1996) Developmental and light-regulated expression of individual members of light-harvesting complex b gene family in Pinus palustris. Plant Physiol 111:627–634

    Article  PubMed  CAS  Google Scholar 

  • Reinbothe S, Runge S, Reinbothe C, van Cleve B, Apel K (1995) Substrate-dependent transport of the NADPH:Protochlorophyllide oxidoreductase into isolated plastids. Plant Cell 7:161–172

    Article  PubMed  CAS  Google Scholar 

  • Schemenewitz A, Pollmann S, Reinbothe C, Reinbothe S (2007) A substrate-independent, 14:3:3 protein-mediated plastid import pathway of NADPH:protochlorophyllide oxidoreductase A. Proc Natl Acad Sci USA 104:8538–8543

    Article  PubMed  CAS  Google Scholar 

  • Schoefs B (1999) The light-dependent and the light-independent reduction of protochlorophyllide a to chlorophyllide a. Photosynthetica 36:481–496

    Article  CAS  Google Scholar 

  • Schoefs B (2001) The protochlorophyllide-chlorophyllide cycle. Photosynth Res 70:257–271

    Article  PubMed  CAS  Google Scholar 

  • Selstam E, Widell A, Johansson LB (1987) A comparison of prolamellar bodies from wheat, Scots pine and Jeffrey pine. Pigment spectra and properties of protochlorophyllide oxidoreductase. Physiol Plant 70:209–214

    Article  CAS  Google Scholar 

  • Shi C, Shi X (2006) Expression switching of three genes encoding light-independent protochlorophyllide oxidoreductase in Chlorella protothecoides. Biotechnol Lett 28:261–265

    Article  PubMed  CAS  Google Scholar 

  • Shinohara K, Murakami A, Fujita Y (1992a) Biochemical characteristics of thylakoid membranes in chloroplasts of dark-grown pine cotyledons. Plant Physiol 98:39–43

    Article  PubMed  CAS  Google Scholar 

  • Shinohara K, Ono T, Inoue Y (1992b) Photoactivation of oxygen-evolving enzyme in dark-grown pine cotyledons: relationship between assembly of photosystem II proteins and integration of manganese and calcium. Plant Cell Physiol 33:281–289

    CAS  Google Scholar 

  • Skinner JS, Timko MP (1999) Differential expression of genes encoding the light-dependent and light-independent enzymes for protochlorophyllide reduction during development in loblolly pine. Plant Mol Biol 39:577–592

    Article  PubMed  CAS  Google Scholar 

  • Skribanek A, Solymosi K, Hideg E, Böddi B (2008) Light and temperature regulation of greening in dark-grown ginkgo (Ginkgo biloba). Physiol Plant 134:649–659

    Article  PubMed  CAS  Google Scholar 

  • Solymosi K, Vitányi B, Hideg E, Böddi B (2007) Etiolation symptoms in sunflower (Helianthus annuus) cotyledons partially covered by the pericarp of the achene. Ann Bot 99:857–867

    Article  PubMed  CAS  Google Scholar 

  • Tanaka A, Tanaka R (2006) Chlorophyll metabolism. Curr Opin Plant Biol 9:248–255

    Article  PubMed  CAS  Google Scholar 

  • Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58:312–346

    Article  Google Scholar 

  • Teakle GR, Griffiths WT (1993) Cloning, characterization and import studies on protochlorophyllide reductase from wheat (Triticum aestivum). Biochem J 296:225–230

    PubMed  CAS  Google Scholar 

  • Tillich M, Lehwark P, Morton BR, Maier UG (2006) The evolution of chloroplast RNA editing. Mol Biol Evol 23:1912–1921

    Article  PubMed  CAS  Google Scholar 

  • Triboush SO, Danilenko NG, Davydenko OG (1998) A method for isolation of chloroplast DNA and mitochondrial DNA from sunflower. Plant Mol Biol Rep 16:183–189

    Article  CAS  Google Scholar 

  • Walles B, Hudák J (1975) A comparative study of chloroplast morphogenesis in seedlings of some conifers (Larix decidua, Pinus sylvestris and Picea abies). Stud For Suec 127:1–22

    Google Scholar 

  • Wang T, Zhang N, Du L (2005) Isolation of RNA of high quality and yield from Ginkgo biloba leaves. Biotechnol Lett 27:629–633

    Article  PubMed  Google Scholar 

  • Yamamoto N, Mukai Y, Matsuoka M, Kano-Murakami Y, Tanaka Y, Ohashi Y, Ozeki Y, Odani K (1991) Light-independent expression of cab and rbcS genes in dark-grown pine seedlings. Plant Physiol 95:379–383

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki S, Nomata J, Fujita Y (2006) Differential operation of dual protochlorophyllide reductases for chlorophyll biosynthesis in response to environmental oxygen levels in the cyanobacterium Leptolyngbya boryana. Plant Physiol 142:911–922

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported by grants from the Slovak Research and Development Agency (APVV-20-020805), Scientific Grant Agency of the Ministry of Education of the Slovak Republic (VEGA 1/3288/06) given to J. H. and from the Sonderforschungsbereich (SFB 429-DFG) given to B. G. We thank Y. Fujita and J. Komenda for kindly providing the primary antibodies used in this work and Jarmila Šramková for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Demko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demko, V., Pavlovič, A., Valková, D. et al. A novel insight into the regulation of light-independent chlorophyll biosynthesis in Larix decidua and Picea abies seedlings. Planta 230, 165–176 (2009). https://doi.org/10.1007/s00425-009-0933-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-0933-3

Keywords

Navigation