Skip to main content
Log in

Two cell wall associated peroxidases from Arabidopsis influence root elongation

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Two class III peroxidases from Arabidopsis, AtPrx33 and Atprx34, have been studied in this paper. Their encoding genes are mainly expressed in roots; AtPrx33 transcripts were also found in leaves and stems. Light activates the expression of both genes in seedlings. Transformed seedlings producing AtPrx33-GFP or AtPrx34-GFP fusion proteins under the control of the CaMV 35S promoter exhibit fluorescence in the cell walls of roots, showing that the two peroxidases are localized in the apoplast, which is in line with their affinity for the Ca2+-pectate structure. The role they can play in cell wall was investigated using (1) insertion mutants that have suppressed or reduced expression of AtPrx33 or AtPrx34 genes, respectively, (2) a double mutant with no AtPrx33 and a reduced level of Atprx34 transcripts, (3) a mutant overexpressing AtPrx34 under the control of the CaMV 35S promoter. The major phenotypic consequences of these genetic manipulations were observed on the variation of the length of seedling roots. Seedlings lacking AtPrx33 transcripts have shorter roots than the wild-type controls and roots are still shorter in the double mutant. Seedlings overexpressing AtPrx34 exhibit significantly longer roots. These modifications of root length are accompanied by corresponding changes of cell length. The results suggest that AtPrx33 and Atprx34, two highly homologous Arabidopsis peroxidases, are involved in the reactions that promote cell elongation and that this occurs most likely within cell walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CaMV 35S:

Cauliflower mosaic virus 35S promoter

CTPP:

C-terminal propeptide

DAPI:

4’,6-diamidino-2-phenylindole

GFP:

green fluorescent protein

ROS:

reactive oxygen species

RT-PCR:

reverse-transcriptase polymerase chain reaction

WAK:

wall associated kinase

References

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Bent AF (2000) Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physiol 124:1540–1547

    Article  PubMed  CAS  Google Scholar 

  • Carpin S, Crevecoeur M, de Meyer M, Simon P, Greppin H, Penel C (2001) Identification of a Ca2+-pectate binding site on an apoplastic peroxidase. Plant Cell 13:511–520

    Article  PubMed  CAS  Google Scholar 

  • Carpin S, Crevecoeur M, Greppin H, Penel C (1999) Molecular cloning and tissue-specific expression of an anionic peroxidase in zucchini. Plant Physiol 120:799–810

    Article  PubMed  CAS  Google Scholar 

  • Carter C, Pan S, Zouhar J, Avila EL, Girke T, Raikhel NV (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 16:3285–3303

    Article  PubMed  CAS  Google Scholar 

  • Casal JJ, Mella RA, Ballare CL, Maldonado S (1994) Phytochrome-mediated effects on extracellular peroxidase activity, lignin content and bending resistance in etiolated Vicia faba epicotyls. Physiol Plant 92:555–562

    Article  CAS  Google Scholar 

  • Decreux A, Messiaen J (2005) Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation. Plant Cell Physiol 46:268–278

    Article  PubMed  CAS  Google Scholar 

  • Dunand C, Tognolli M, Overney S, von Tobel L, De Meyer M, Simon P, Penel C (2002) Identification and characterisation of Ca2+-pectate binding peroxidases in Arabidopsis thaliana. J Plant Physiol 159:1165–1171

    Article  CAS  Google Scholar 

  • Feldmann KA, Wierzbicki AM, Reiter RS, Coomber SA (1991) T-DNA insertion in Arabidopsis. In: Hermann R, Larkins B (eds) Plant molecular biology. Plenum Press, pp 563–574

    Google Scholar 

  • Gajhede M, Schuller DJ, Henriksen A, Smith AT, Poulos TL (1997) Crystal structure of horseradish peroxidase C at 2.15 A resolution. Nat Struct Biol 4:1032–1038

    Article  PubMed  CAS  Google Scholar 

  • Gaspar T, Kevers C, Penel C, Greppin H, Reid D, Thorpe T (1996) Plant hormones and plant growth regulators in plant tissue culture. In Vitro Cell Dev-Plants 32:272–289

    Article  CAS  Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  PubMed  CAS  Google Scholar 

  • Kawaoka A, Matsunaga E, Endo S, Kondo S, Yoshida K, Shinmyo A, Ebinuma H (2003) Ectopic expression of a horseradish peroxidase enhances growth rate and increases oxidative stress resistance in hybrid aspen. Plant Physiol 132:1177–1185

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Shinkle JR, Roux SJ (1989) Phytochrome induces changes in the immunodetectable level of a wall peroxidase that precede growth changes in maize seedlings. Proc Natl Acad Sci USA 86:9866–9870

    Article  PubMed  CAS  Google Scholar 

  • Kis M, Burbridge E, Brock IW, Heggie L, Dix PJ, Kavanagh TA (2004) An N-terminal peptide extension results in efficient expression, but not secretion, of a synthetic horseradish peroxidase gene in transgenic tobacco. Ann Bot (Lond) 93:303–310

    Article  CAS  Google Scholar 

  • Matsui T, Nakayama H, Yoshida K, Shinmyo A (2003) Vesicular transport route of horseradish C1a peroxidase is regulated by N- and C-terminal propeptides in tobacco cells. Appl Microbiol Biotechnol 62:517–522

    Article  PubMed  CAS  Google Scholar 

  • McBride KE, Summerfelt KR (1990) Improved binary vectors for Agrobacterium-mediated plant transformation. Plant Mol Biol 14:269–276

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Neuhaus JM (1996) Protein targeting to the plant vacuole. Plant Physiol Biochem 34: 217–221

    CAS  Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265

    Article  PubMed  CAS  Google Scholar 

  • Passardi F, Penel C, Dunand C (2004) Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci 9:534–540

    Article  PubMed  CAS  Google Scholar 

  • Penel C, Greppin H (1996) Pectin binding proteins: characterization of the binding and comparison with heparin. Plant Physiol Biochem 34:479–488

    CAS  Google Scholar 

  • Savitsky PA, Gazaryan IG, Tishkov VI, Lagrimini LM, Ruzgas T, Gorton L (1999) Oxidation of indole-3-acetic acid by dioxygen catalysed by plant peroxidases: specificity for the enzyme structure. Biochem J 340:579–583

    Article  PubMed  CAS  Google Scholar 

  • Schopfer P (2001) Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth. Plant J 28:679–688

    Article  PubMed  CAS  Google Scholar 

  • Shah K, Penel C, Gagnon J, Dunand C (2004) Purification and identification of a Ca2+-pectate binding peroxidase from Arabidopsis leaves. Phytochemistry 65:307–312

    Article  PubMed  CAS  Google Scholar 

  • Tognolli M, Penel C, Greppin H, Simon P (2002) Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene 288:129–138

    Article  PubMed  CAS  Google Scholar 

  • Valério L, De Meyer M, Penel C, Dunand C (2004) Expression analysis of the Arabidopsis peroxidase multigenic family. Phytochemistry 65:1331–1342

    Article  PubMed  CAS  Google Scholar 

  • von Arnim AG, Deng XW, Stacey MG (1998) Cloning vectors for the expression of green fluorescent protein fusion proteins in transgenic plants. Gene 221:35–43

    Article  PubMed  Google Scholar 

  • Welinder KG (1992) Superfamily of plant, fungal and bacterial peroxidases. Curr Opin Struct Biol 2:388–393

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Susan Gasser (Friedrich Miescher Institute, FMI, Basel, Switzerland) for the use of the Zeiss Axioplan II microscope, Dr. Thierry Laroche (FMI) for his scientific comments and technical support, and Prof. Christian Fankhauser (University of Lausanne, Switzerland) for the gift of the binary vectors pCHF3 and pCHF5. This work was supported by the Swiss National Science Foundation (grant 31-068003.02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Dunand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Passardi, F., Tognolli, M., De Meyer, M. et al. Two cell wall associated peroxidases from Arabidopsis influence root elongation. Planta 223, 965–974 (2006). https://doi.org/10.1007/s00425-005-0153-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0153-4

Keywords

Navigation