Skip to main content
Log in

Chilling stress suppresses chloroplast development and nuclear gene expression in leaves of mung bean seedlings

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Etiolated leaves of 28°C-dark-grown mung bean (Vigna radiata L. cv. 2937) seedlings fail to turn green after being shifted to a light and cold environment. At the visible phenotypic level, incapability of leaf greening is the only failure event for the de-etiolation of mung bean seedlings at low temperature. Ultrastructural studies revealed that chloroplast development was completely suppressed by chilling treatment. A cDNA library originating from 28°C-light-grown seedling leaves was constructed for screening cold-suppressed (cos) genes. Thirteen full-length cDNA clones were obtained, with 12 clones encoding chloroplast proteins, which, according to their known physiological functions, were important for chloroplast development and photosynthesis. Another cos cDNA encodes CYP90A2, which is a cytochrome P450 protein involved in the biosynthesis of brassinosteroid hormones. All cos genes are light-regulated at normal temperature. The influence of chilling stress on cos expression was examined in 10°C-light- and 10°C-dark-grown etiolated seedlings, and in 10°C-light-grown green plants. The data show that cos expression in these three treatments is severely suppressed. This suppression is controlled at the transcriptional level, as demonstrated by nuclear runoff experiments, and is reversible because cos mRNAs accumulate again after the cold-treated plants have been transferred to 28°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

β-CA:

β-Carbonic anhydrase

cos :

Cold suppressed

CTIC:

Cool-temperature-induced-chlorosis

LHC II:

Light-harvesting complex II

POR:

Protochlorophyllide oxidoreductase

PSI:

Photosystem I

PSII:

Photosystem II

RCA:

Rubisco activase

SSU:

Rubisco small subunit

References

  • Aguan K, Sugawara K, Suzuki N, Kusano T (1993) Low-temperature-dependent expression of a rice gene encoding a protein with a leucine-zipper motif. Mol Gen Genet 24:1–8

    Google Scholar 

  • Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098:275–335

    CAS  PubMed  Google Scholar 

  • Anderson SL, Somers DE, Millar AJ, Hanson K, Chory J, Kay SA (1997) Attenuation of phytochrome A and B signaling pathways by the Arabidopsis circadian clock. Plant Cell 9:1727–1743

    CAS  PubMed  Google Scholar 

  • Apel K, Santel H-J, Redlinger TE, Falk H (1980) The protochlorophyllide holochrome of barley (Hordeum Vulgare L.). Isolation and characterization of the NADPH: protochlorophyllide oxidoreductase. Eur J Biochem 111:251–258

    CAS  PubMed  Google Scholar 

  • Armstrong GA, Runge S, Frick G, Sperling U, Apel K (1995) Identification of NADPH: protochlorophyllide oxidoreductases A and B branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol 108:1505–1517

    CAS  PubMed  Google Scholar 

  • Aro E-M, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    CAS  PubMed  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidmon JG, Smith JA, Struhl K (1987) Current protocols in molecular biology. Greene Publishing Associates, Wiley Interscience, NY

    Google Scholar 

  • Badger MR, Price GD (1994) The role of carbonic anhydrase in photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 45:369–392

    CAS  Google Scholar 

  • Bancos S, Nomura T, Sato T, Molnar G, Bishop GJ, Koncz C, Yokota T, Nagy F, Szekeres M (2002) Regulation of transcript levels of the Arabidopsis cytochrome p450 genes involved in brassinosteroid biosynthesis. Plant Physiol 130:504–513

    Article  CAS  PubMed  Google Scholar 

  • Bantle JA, Maxwell IH, Hahn WE (1976) Specificity oligo(dT)-cellulose chromatography in the isolation of polyadenylated RNA. Anal Biochem 72:413–427

    CAS  PubMed  Google Scholar 

  • Braun P, Wild A (1984) The influence of brassinosteroid on growth and parameters of photosynthesis of wheat and mustard plants. J Plant Physiol 116:189–196

    CAS  Google Scholar 

  • Browse J, Somerville C (1991) Glycerolipid synthesis: biochemistry and regulation. Annu Rev Plant Physiol Plant Mol Biol 42:467–506

    CAS  Google Scholar 

  • Clouse S, Sasse J (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    CAS  PubMed  Google Scholar 

  • Durst F, Nelson DR (1995) Diversity and evolution of plant P450 and P450-reductases. Drug Metabol Drug Interact 12:189–206

    CAS  PubMed  Google Scholar 

  • Gallagher TF, Ellis RJ (1982) Light-stimulated transcription of genes for two chloroplast polypeptides in isolated pea leaf nuclei. EMBO J 1:1493–1498

    CAS  Google Scholar 

  • Graham D, Patterson BD (1982) Responses of plants to low, nonfreezing temperatures: proteins, metabolism, and acclimation. Annu Rev Plant Physiol 33:347–372

    CAS  Google Scholar 

  • Green BR, Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47:685–714

    CAS  PubMed  Google Scholar 

  • Green BR, Pichersky E, Kloppstech K (1991) Chlorophyll a/b binding proteins: an extended family. Trends Biochem Sci 16:181–186

    CAS  PubMed  Google Scholar 

  • Griffiths WT (1978) Reconstitution of chlorophyllide formation by isolated etioplasts membranes. Biochem J 174:681–692

    CAS  PubMed  Google Scholar 

  • Hahn M, Walbot V (1989) Effects of cold-treatment on protein synthesis and mRNA levels in rice leaves. Plant Physiol 91:930–938

    CAS  Google Scholar 

  • Haldrup A, Simpson DJ, Scheller HV (2000) Down-regulation of the PSI-F subunit of photosystem I (PSI) in Arabidopsis thaliana. J Biol Chem 275:31211–31218

    CAS  PubMed  Google Scholar 

  • Havaux M, Tardy F (1997) Thermostability and photostability of photosystem II in leaves of the Chlorina-f2 barley mutant deficient in light-harvesting chlorophyll a/b protein complexes. Plant Physiol 113:913–923

    CAS  PubMed  Google Scholar 

  • Hippler M, Drepper F, Haehnel W, Rochaix J-D (1998) The N-terminal domain of PsaF: precise recognition site for binding and fast electron transfer from cytochrome c6 and plastocyanin to photosystem I of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 95:7339–7344

    CAS  PubMed  Google Scholar 

  • Holtorf H, Reinbothe S, Reinbothe C, Bereza B, Apel K (1995) Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L.). Proc Natl Acad Sci U S A 92:3254–3258

    CAS  PubMed  Google Scholar 

  • Hoober JK, Eggink LL (1999) Assembly of light-harvesting complex II and biogenesis of thylakoid membranes in chloroplasts. Photosynth Res 61:197–215

    CAS  Google Scholar 

  • Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127:910–917

    Article  CAS  PubMed  Google Scholar 

  • Jebanathirajah JA, Coleman JR (1998) Association of carbonic anhydrase with a Calvin cycle enzyme complex in Nicotiana tabacum. Planta 204:177–182

    CAS  PubMed  Google Scholar 

  • Kim JC, Lee SH, Cheong YH, Yoo CM, Lee SI, Chun HJ, Yun DJ, Hong JC, Lee SY, Lim CO, Cho MJ (2001) A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J 25:247–259

    Article  CAS  PubMed  Google Scholar 

  • Klein S (1960) The effect of low temperature on the development of the lamellar system in chloroplasts. J Biophys Biochem Cytol 8:529–538

    CAS  PubMed  Google Scholar 

  • Kratsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant Cell Environ 23:337–350

    CAS  Google Scholar 

  • Krizek DT, Mandava NB (1983) Influence of spectral quality on growth response of intact bean plants to brassinosteroid, a growth-promoting steroidal lactone. II. Chlorophyll content and partitioning of assimilate. Physiol Plant 57:324–329

    CAS  Google Scholar 

  • Kro’l M, Ivanov AG, Jansson S, Kloppstech K, Huner NPA (1999) Greening under high light or cold temperature affects the level of xanthophyll-cycle pigments, early light-inducible proteins, and light-harvesting polypeptides in wild-type barley and the Chlorina f2 mutant. Plant Physiol 120:193–203

    CAS  PubMed  Google Scholar 

  • Kusano T, Berberich T, Harada M, Suzuki N, Sugawara K (1995) A maize DNA-binding factor with a bZIP motif is induced by low temperature. Mol Gen Genet 248:507–517

    CAS  PubMed  Google Scholar 

  • Mandava NB (1988) Plant growth-promoting brassinosteroids. Annu Rev Plant Physiol Plant Mol Biol 39:23–52

    CAS  Google Scholar 

  • Millar AJ, Kay SA (1991) Circadian control of cab gene transcription and mRNA accumulation in Arabidopsis. Plant Cell 3:541–550

    CAS  PubMed  Google Scholar 

  • Mullet JE, Arntzen CJ (1980) Simulation of grana stacking in model membrane system mediation by a purified light-harvesting pigment-protein complex from chloroplasts. Biochim Biophys Acta 589:100–117

    CAS  PubMed  Google Scholar 

  • Nelson DR, Kamataki T, Waxman DJ, Peter G, Estabrook RW, Feyereisen R, Gonzalez FJ, Coon MJ, Gunsalus IC, Gotoh O, Okuda K, Nebert DW (1993) The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol 12:1–51

    CAS  PubMed  Google Scholar 

  • Nie GY, Baker NR (1991) Modifications to thylakoid composition during development of maize leaves at low growth temperatures. Plant Physiol 95:184–191

    CAS  Google Scholar 

  • Pilgrim ML, McClung CR (1993) Differential involvement of the circadian clock in the expression of genes required for ribuulose-1,5-bisphosphate carboxylase/oxygenase synthesis, assembly, and activation in Arabidopsis thaliana. Plant Physiol 103:553–564

    CAS  PubMed  Google Scholar 

  • Portis AR Jr (1992) Regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase activity. Annu Rev Plant Physiol Plant Mol Biol 43:415–437

    Article  CAS  Google Scholar 

  • Quail PH (2002) Phytochrome photosensory signaling networks. Mol Cell Biol 3:85–93

    Article  CAS  PubMed  Google Scholar 

  • Ryrie IJ, Anderson JM, Goodchild DJ (1980) The role of the light-harvesting chlorophyll a/b-protein complex in chloropst membrane stacking. Eur J Biochem 107:345–354

    CAS  PubMed  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–27

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Sanger FS, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    CAS  PubMed  Google Scholar 

  • Scheller HV, Naver H, Møller BL (1997) Molecular aspects of photosystem I. Physiol Plant 100:842–851

    CAS  Google Scholar 

  • Scott MP, Nielsen VS, Knoetzel J, Andersen R, Møller BL (1994) Import of the barley PSI-F subunit into the thylakoid lumen of isolated chloroplasts. Plant Mol Biol 26:1223–1229

    CAS  PubMed  Google Scholar 

  • Slack CR, Roughan PG, Bassett HCM (1974) Selective inhibition of mesophyll chloroplast development in some C4-pathway species by low night temperature. Planta 118:57–73

    CAS  Google Scholar 

  • Sonoike K (1996) Photoinhibition of photosystem I: its physiological significance in the chilling sensitivity of plants. Plant Cell Physiol 37:239–247

    CAS  Google Scholar 

  • Sperling U, van Cleve B, Frick G, Apel K, Armstrong GA (1997) Overexpression of light-dependent PORA or PORB in plants depleted of endogenous POR by far-red light enhances seedling survival in white light and protects against photooxidative damage. Plant J 12:649–658

    CAS  PubMed  Google Scholar 

  • Szekeres M, Nemeth K, Koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T, Redei GP, Nagy F, Schll J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182

    CAS  PubMed  Google Scholar 

  • Taft EB (1951) The specificity of the methyl green-pyronin stain for nucleic acids. Exp Cell Res 2:312–326

    CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  PubMed  Google Scholar 

  • Thomashow MF (2001) So what’s new in the field of plant cold acclimation? Lots! Plant Physiol 125:89–93

    CAS  PubMed  Google Scholar 

  • Tjus SE, Møller BL, Scheller HV (1999) Photoinhibition of photosystem I damages both reaction center proteins PSI-A and PSI-B and acceptor-side located small photosystem I polypeptides. Photosynth Res 60:75–86

    CAS  Google Scholar 

  • Wang CY (1982) Physiological and biochemical responses of plants to chilling stress. HortScience 17:173–186

    Google Scholar 

  • von Wettstein D, Gough S, Kannangara CG (1995) Chlorophyll biosynthesis. Plant Cell 7:1039–1057

    PubMed  Google Scholar 

  • Wise RR (1995) Chilling-enhanced photooxidation: the production, action, and study of reactive oxygen species produced during chilling in the light. Photosynth Res 45:79–97

    Article  CAS  Google Scholar 

  • Wynn RM, Malkin R (1988) Interaction of plastocyanin with photosystem I: a chemical cross-linking study of the polypeptide that binds plastocyanin. Biochemistry 27:5863–5869

    CAS  PubMed  Google Scholar 

  • Yoshida R, Kanno A, Kameya T (1996) Cool temperature-induced chlorosis in rice plants. Plant Physiol 112:585–590

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. David R. Nelson (University of Tennessee, Memphis, USA) for the assignment of the COS10 sequence to CYP90A2. This investigation was supported by grants from the National Science Council, ROC (Taiwan) (NSC86-2311-B002-009, NSC87-2311-B002-005-B01 and NSC88-2311-B002-018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yih-Ming Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, MT., Chen, SL., Lin, CY. et al. Chilling stress suppresses chloroplast development and nuclear gene expression in leaves of mung bean seedlings. Planta 221, 374–385 (2005). https://doi.org/10.1007/s00425-004-1451-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1451-y

Keywords

Navigation