Skip to main content
Log in

The Arabidopsis SERK1 protein interacts with the AAA-ATPase AtCDC48, the 14-3-3 protein GF14λ and the PP2C phosphatase KAPP

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Leucine-rich repeat (LRR)-containing transmembrane receptor-like kinases (RLKs) are important components of plant signal transduction. The Arabidopsis thaliana somatic embryogenesis receptor-like kinase 1 (AtSERK1) is an LRR-RLK proposed to participate in a signal transduction cascade involved in embryo development. By yeast two-hybrid screening we identified AtCDC48, a homologue of the mammalian AAA-ATPase p97 and GF14λ, a member of the Arabidopsis family of 14-3-3 proteins as AtSERK1 interactors. In vitro, the AtSERK1 kinase domain is able to transphosphorylate and bind both AtCDC48 and GF14λ. In yeast, AtCDC48 interacts with GF14λ and with the PP2C phosphatase KAPP. In plant protoplasts AtSERK1 interacts with GF14λ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

RLK:

Receptor-like kinase

LRR:

Leucine-rich repeat

MBP:

Maltose binding protein

GST:

Glutathione-S-transferase

FRET:

Förster resonance energy transfer

FSPIM:

Fluorescence spectral imaging microscopy

APB:

Acceptor photobleaching

CFP:

Cyan fluorescent protein

YFP:

Yellow fluorescent protein

References

  • Bastiaens PIH, Jovin TM (1996) Microspectroscopic imaging tracks the intracellular processing of a signal transduction protein: fluorescent-labelled protein kinase C βI. Proc Natl Acad Sci USA 93:8407–8412

    Article  CAS  PubMed  Google Scholar 

  • Camoni L, Harper JF, Palmgren MG (1998) 14-3-3 proteins activate a plant calcium-dependent protein kinase (CDPK). FEBS Lett 430:381–384

    CAS  PubMed  Google Scholar 

  • Egerton M, Ashe OR, Chen D, Druker BJ, Burgess WH, Samelson LE (1992) VCP, the mammalian homologue of Cdc48, is tyrosine phosphorylated in response to T cell antigen receptor activation. EMBO J 11:3533–3540

    CAS  PubMed  Google Scholar 

  • Feiler HS, Despez T, Santoni V, Kronenberger J, Caboche M, Traas J (1995) The higher plant Arabidopsis thaliana encodes a functional CDC48 homologue, which is highly expressed in dividing and expanding cells. EMBO J 14:5625–5637

    Google Scholar 

  • Fröhlich K-U, Fries H-W, Rüdiger M, Erdmann R, Botstein D, Mecke D (1991) Yeast cell cycle protein CDC48p shows full-length homology to the mammalian protein VCP and is a member of a protein family involved in secretion, peroxisome formation and gene expression. J Cell Biol 114:443–453

    PubMed  Google Scholar 

  • Fröhlich K-U, Fries H-W, Peters J-M, Mecke D (1995) The ATPase activity of purified CDC48p from Saccharomyces cerevisiae shows complex dependance on ATP-, ADP-, and NADH-concentrations and is completely inhibited by NEM. Biochim Biophys Acta 1253:25–32

    PubMed  Google Scholar 

  • Golbik R, Lupas AN, Koretke KK, Baumeister W, Peters J (1999) The janus face of the archeal Cdc48/p97 homologue VAT: protein folding versus unfolding. Biol Chem 380:1049–1062

    CAS  PubMed  Google Scholar 

  • Grebe M, Gadea J, Steinmann T, Kientz M, Rahfeld J-U, Salchert K, Koncz C, Jurgens G (2000) A conserved domain of the Arabidopsis GNOM protein mediates subunit interaction and Cyclophilin 5 binding. Plant Cell 12:343–356

    CAS  PubMed  Google Scholar 

  • Hecht V, Vielle-Calzada J-P, Hartog MV, Schmidt EDL, Boutillier K, Grossniklaus U, de Vries SC (2001) The Arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816

    Article  CAS  PubMed  Google Scholar 

  • van der Hoeven PC, van der Wal JC, Ruurs P, van Dijk MC, van Blitterswijk J (2000) 14-3-3 isotypes facilitate coupling of protein kinase C-ζ to Raf-1: negative regulation by 14-3-3 phosphorylation. Biochem J 345:297–306

    PubMed  Google Scholar 

  • Ikeda Y, Koizumi N, Kusano T, Sano H (2000) Specific binding of a 14-3-3 protein to auto-phosphorylated WP4, an SNF1-related wheat protein kinase, and to WPK4-phosphorylated nitrate reductase. J Biol Chem 275:31695–31700

    CAS  PubMed  Google Scholar 

  • Jarillo JA, Capel J, Leyva A, Martinez-Zapater JM, Salinas J (1994) Two related low-temperature-inducible genes of Arabidopsis encode proteins showing high homology to 14-3-3 proteins, a family of putative kinase regulators. Plant Mol Biol 25:693–704

    CAS  PubMed  Google Scholar 

  • Jarosch E, Taxis C, Volkwein C, Bordallo J, Finley D, Wolf DH, Sommer T (2002) Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat Cell Biol 4:134–139

    CAS  PubMed  Google Scholar 

  • Latterich M, Fröhlich K-U, Schekman R (1995) Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes. Cell 82:885–893

    Article  CAS  PubMed  Google Scholar 

  • Lauber MH, Waizenegger I, Steinmann T, Schwarz H, Mayer U, Hwang I, Lukowitz W, Jürgens G (1997) The Arabidopsis KNOLLE protein is a cytokinesis-specific syntaxin. J Cell Biol 139:1485–1493

    CAS  PubMed  Google Scholar 

  • Lavoie C, Chevet E, Roy L, Tonks NK, Fazel A, Posner BI, Paiement J, Bergeron JJM (2000) Tyrosine phosphorylation of p97 regulates transitional endoplasmic reticulum assembly in vitro. Proc Natl Acad Sci USA 97:13637–13642

    CAS  PubMed  Google Scholar 

  • Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213–222

    CAS  PubMed  Google Scholar 

  • Liu D, Bienkowska J, Petosa C, Collier J, Halan F, Liddington R (1995) Crystal structure of the zeta isoforms of the 14-3-3 protein. Nature 376:191–194

    Article  CAS  PubMed  Google Scholar 

  • Lu G, Sehnke PC, Ferl RJ (1994) Phosphorylation and calcium binding properties of an Arabidopsis GF14 brain protein homologue. Plant Cell 6:501–510

    CAS  PubMed  Google Scholar 

  • Lukowitz W, Mayer U, Jürgens G (1996) Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell 84:61–71

    CAS  PubMed  Google Scholar 

  • Madeo F, Schlauer J, Zischka H, Mecke D, Fröhlich K-U (1998) Tyrosine phosphorylation regulates cell cycle-dependent nuclear localisation of Cdc48p. Mol Biol Cell 9:131–141

    CAS  PubMed  Google Scholar 

  • Meyer HH, Shorter JG, Seemann J, Pappin D, Warren G (2000) A complex of mammalian Ufd1 and NpI4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J 19:2181–2192

    Article  CAS  PubMed  Google Scholar 

  • Moorhead G, Douglas P, Cotelle V, Harthill J, Morrice N, Meek S, Deiting U, Stitt M, Scarabel M, Aitken A, MacKintosh C (1999) Phosphorylation-dependent interactions between enzymes of plant metabolism and 14-3-3 proteins. Plant J 18:1–12

    CAS  PubMed  Google Scholar 

  • Muslin AJ, Tanner JW, Allen PM, Shaw AS (1996) Interaction of 14-3-3 with signalling proteins is mediated by the recognition of phosphoserine. Cell 84:889–897

    Article  CAS  PubMed  Google Scholar 

  • Nam KH, Li J (2002) BRI1/BAK1, a recptor kinase pair mediating brassinosteroid signaling. Cell 110:203–212

    CAS  PubMed  Google Scholar 

  • Pécheur E-I, Marin I, Maier O, Bakowsky U, Ruysschaert J-M, Hoekstra D (2002) Phospholipid species act as modulators in p97/p47-mediated fusion of Golgi membranes. Biochemistry 41:9813–9823

    PubMed  Google Scholar 

  • Rabinovich E, Kerem A, Fröhlich K-U, Diamant N, Bar-Nun S (2002) AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol Cell Biol 22:626–634

    CAS  PubMed  Google Scholar 

  • Rancour DM, Dickey CE, Park S, Bednarek SY (2002) Characterisation of AtCDC48. Evidence for multiple membrane fusion mechanisms at the plane of cell division in plants. Plant Physiol 130:1241–1253

    CAS  PubMed  Google Scholar 

  • Rosenquist M, Alsterfjord M, Larsson C, Sommarin M (2001) Data mining the Arabidopsis genome reveals fifteen 14-3-3 genes. Expression is demonstrated for two out of five novel genes. Plant Physiol 127:142–149

    Article  CAS  PubMed  Google Scholar 

  • Sehnke PC, DeLille JM, Ferl RJ (2002) Consummating signal transduction: the role of 14-3-3 proteins in the completion of signal-induced transitions in protein activity. Plant Cell 14:S339-S354

    CAS  PubMed  Google Scholar 

  • Shah K, Gadella TWJ Jr, van Erp H, Hecht V, de Vries SC (2001a) Subcellular localisation and oligomerisation of the Arabidopsis thaliana somatic embryogenesis receptor kinase 1 protein. J Mol Biol 309:641–655

    CAS  PubMed  Google Scholar 

  • Shah K, Vervoort J, de Vries SC (2001b) Role of threonines in the AtSERK1 activation loop in auto- and trans-phosphorylation. J Biol Chem 276:41263–41269

    CAS  PubMed  Google Scholar 

  • Shah K, Russinova E, Gadella TWJ Jr, Willemse J, de Vries SC (2002) The Arabidopsis kinase-associated protein phosphatase controls internalisation of the somatic embryogenesis receptor kinase 1. Genes Dev 16:1707–1720

    CAS  PubMed  Google Scholar 

  • Sorell DA, Marchbank MA, Chrimes DA, Dickinson R, Rogers HJ, Francis D, Grierson CS, Halford NG (2003) The Arabidopsis14-3-3 protein, GF14ω, binds to the Schizosaccharomyces pombe Cdc25 phosphatase and rescues checkpoint defects in the rad24 mutant. Planta 218:50–57

    PubMed  Google Scholar 

  • Wang J, Goodman HM, Zhang H (1999) An Arabidopsis 14-3-3 protein can act as a transcriptional activator in yeast. FEBS Lett 443:282–284

    CAS  PubMed  Google Scholar 

  • Wouters FS, Bastiaens PIH (1999) Fluorescence lifetime imaging of receptor tyrosine kinase activity in cells. Curr Biol 9:1127–1130

    CAS  PubMed  Google Scholar 

  • Wu K, Lu G, Sehnke P, Ferl RJ (1997) The heterologous interactions among plant 14-3-3 proteins and identification of regions that are important for dimerisation. Arch Biochem Biophys 339:2–8

    CAS  PubMed  Google Scholar 

  • Xiao B, Smerdon SJ, Jones DH, Dodson GG, Soneij Y, Aitken A, Gamblin SJ (1995) Structure of a 14-3-3 protein and implications for coordination of multiple signalling pathways. Nature 376:188–191

    CAS  PubMed  Google Scholar 

  • Yaffe MB (2002) How do 14-3-3 proteins work?—Gatekeeper phosphorylation and the molecular and anvil hypothesis. FEBS Lett 513:53–57

    Article  CAS  PubMed  Google Scholar 

  • Yaffe MB, Rithinger K, Volinia S, Caron PR, Aitken A, Leffers H, Gamblin SJ, Smerdon SJ, Cantley LC (1997) Structural basis for 14-3-3 phosphopeptide binding specificity. Cell 91:961–971

    CAS  PubMed  Google Scholar 

  • Zhang H, Wang J, Hwang I, Goodman HM (1995) Isolation and expression of an Arabidopsis 14-3-3-like protein gene. Biochim Biophys Acta 1266:113–116

    CAS  PubMed  Google Scholar 

  • Zhang S-H, Kobayashi R, Graves PR, Piwnica-Worms H, Tonks NK (1997) Serine phosphorylation dependent association of the band 4.1-related protein-tyrosine phosphatase PTPH1 with 14-3-3β protein. J Biol Chem 272:27281–27287

    CAS  PubMed  Google Scholar 

  • Zhang S-H, Liu J, Kobayashi R, Tonks NK (1999) Identification of the cell cycle regulator VCP (p97/CDC48) as a substrate of the band 4.1-related protein-tyrosine phosphatase PTPH1. J Biol Chem 274:17806–17812

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the following colleagues from Wageningen University, Laboratories of Biochemistry and Molecular Biology: Casper Vroemen and Vered Raz for the many useful discussions and critical comments on the manuscript, Ingrid Vleghels for her help with the yeast two-hybrid system, Jeroen Pouwels for his help with isolation and transformation of the cowpea protoplasts, Boudewijn van Veen, Jacques Vervoort and Olga Kulikova for their help with the figures in the manuscript and Gerard van der Krogt for providing us with the YFP/CFP cloning vectors. This work was supported by grant 805.18.302 from the Netherlands Organisation for Scientific Research NWO (I. M. R), grant QLG2-2000-00603 from the EU Quality of Life and Management of Living Resources program (E. R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sacco C. de Vries.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rienties, I.M., Vink, J., Borst, J.W. et al. The Arabidopsis SERK1 protein interacts with the AAA-ATPase AtCDC48, the 14-3-3 protein GF14λ and the PP2C phosphatase KAPP. Planta 221, 394–405 (2005). https://doi.org/10.1007/s00425-004-1447-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1447-7

Keywords

Navigation