Skip to main content
Log in

The formation, vacuolar localization, and tonoplast transport of salicylic acid glucose conjugates in tobacco cell suspension cultures

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The metabolism of salicylic acid (SA) in tobacco (Nicotiana tabacum L. cv. KY 14) cell suspension cultures was examined by adding [7−14C]SA to the cell cultures for 24 h and identifying the metabolites through high performance liquid chromatography analysis. The three major metabolites of SA were SA 2-O-β-D-glucose (SAG), methylsalicylate 2-O-β-D-glucose (MeSAG) and methylsalicylate. Studies on the intracellular localization of the metabolites revealed that all of the SAG associated with tobacco protoplasts was localized in the vacuole. However, the majority of the MeSAG was located outside the vacuole. The tobacco cells contained an SA inducible SA glucosyltransferase (SAGT) enzyme that formed SAG. The SAGT enzyme was not associated with the vacuole and appeared to be a cytoplasmic enzyme. The vacuolar transport of SAG was characterized by measuring the uptake of [14C]SAG into tonoplast vesicles isolated from tobacco cell cultures. SAG uptake was stimulated eightfold by the addition of MgATP. The ATP-dependent uptake of SAG was inhibited by bafilomycin A1 (a specific inhibitor of the vacuolar H+-ATPase) and dissipation of the transtonoplast H+-electrochemical gradient. Vanadate was not an inhibitor of SAG uptake. Several β-glucose conjugates were strong inhibitors of SAG uptake, whereas glutathione and glucuronide conjugates were only marginally inhibitory. The SAG uptake exhibited Michaelis–Menten type saturation kinetics with a Km and Vmax value of 11 μM and 205 pmol min−1 mg−1, respectively, for SAG. Based on the transport characteristics it appears as if the vacuolar uptake of SAG in tobacco cells occurs through an H+-antiport-type mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABC transporter:

ATP-binding cassette transport protein

DNP-GS:

S-(2,4-Dinitrophenyl)glutathione

E217G:

β Estradiol 17-(β-D-glucuronide)

H+-ATPase:

H+-Translocating adenosine triphosphatase

H+-PPase:

H+-Translocating pyrophosphatase

MeSA:

Methyl salicylate

MeSAG:

Methyl salicylate 2-O-β-D-glucoside

o-NPG:

o-Nitrophenyl β-D-glucoside

p-NPαG:

p-Nitrophenyl α-D-glucoside

p-NPG:

p-Nitrophenyl β-D-glucoside

SA:

Salicylic acid

SAG:

Salicylic acid 2-O-β-D-glucoside

SAGT:

Salicylic acid glucosyltransferase

SGE:

Salicylic acid glucose ester

TMV:

Tobacco mosaic virus

References

  • Bartholomew DM, Van Dyk DE, Lau S-MC, O’Keefe DP, Rea PA, Viitanen PV (2002) Alternate energy-dependent pathways for the vacuolar uptake of glucose and glutathione conjugates. Plant Physiol 130:1562–1572

    Article  CAS  PubMed  Google Scholar 

  • Boller T, Kende H (1979) Hydrolytic enzymes in the central vacuole of plant cells. Plant Physiol 63:1123–1132

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bray EA, Zeevaart JAD (1985) The compartmentation of abscisic acid and β-D-glucopyranosyl abscisate in mesophyll cells. Plant Physiol 79:719–722

    CAS  Google Scholar 

  • Chassagne D, Crouzet J, Bayonove CL, Baumes RL (1997) Glycosidically bound eugenol and methyl salicylate in the fruit of edible Passiflora species. J Agric Food Chem 45:2685–2689

    Article  CAS  Google Scholar 

  • Dean JV, Mills JD (2004) Uptake of salicylic acid 2-O-β-D-glucose into soybean tonoplast vesicles by an ATP-binding cassette transporter-type mechanism. Physiol Plant 120:603–612

    Article  CAS  PubMed  Google Scholar 

  • Dean JV, Shah RP, Mohammed LA (2003) Formation and vacuolar localization of salicylic acid glucose conjugates in soybean cell suspension cultures. Physiol Plant 118:328–336

    Article  CAS  Google Scholar 

  • Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J (1994) A central role of salicylic acid in plant disease resistance. Science 266:1247–1250

    CAS  Google Scholar 

  • Dröse S, Bindseil KU, Bowman EJ, Siebers A, Zeeck A, Altendorf K (1993) Inhibitory effect of modified bafilomycins and concanamycins on P- and V-type adenosinetriphosphatases. Biochemistry 32:3902–3906

    PubMed  Google Scholar 

  • Edwards R (1994) Conjugation and metabolism of salicylic acid in tobacco. J Plant Physiol 143:609–614

    CAS  Google Scholar 

  • Enyedi AJ, Raskin I (1993) Induction of UDP-glucose:salicylic acid glucosyltransferase activity in tobacco mosaic virus-inoculated tobacco (Nicotiana tabacum) leaves. Plant Physiol 101:1357–1380

    Google Scholar 

  • Enyedi AJ, Yalpani N, Silverman P, Raskin I (1992) Localization, conjugation and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus. Proc Natl Acad Sci U S A 89:2480–2484

    CAS  PubMed  Google Scholar 

  • Frangne N, Eggmann T, Koblischke C, Weissenböck G, Martinoia E, Klein M (2002) Flavone glucoside uptake into barley mesophyll and Arabidopsis cell culture vacuoles. Energization occurs by H+-antiport and ATP-binding cassette-type mechanisms. Plant Physiol 128:726–733

    Article  CAS  PubMed  Google Scholar 

  • Fusseder A, Ziegler P (1988) Metabolism and compartmentation of dihydrozeatin exogenously supplied to photoautotrophic suspension cultures of Chenopodium rubrum. Planta 173:104–109

    Article  CAS  Google Scholar 

  • Garcia-Martinez JL, Ohlrogge JB, Rappaport L (1981) Differential compartmentation of gibberellin A1 and its metabolites in vacuoles of cowpea and barley leaves. Plant Physiol 68:865–867

    CAS  Google Scholar 

  • Hopp W, Seitz HU (1987) The uptake of acylated anthocyanin into isolated vacuoles from a cell suspension culture of Daucus carota. Planta 170:74–85

    Article  CAS  Google Scholar 

  • Jones P, Vogt T (2001) Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta 213:164–174

    Article  CAS  PubMed  Google Scholar 

  • Klein M, Weissenböck G, Dufaud A, Gaillard C, Kreuz K, Martinoia E (1996) Different energization mechanisms drive the vacuolar uptake of a flavonoid glucoside and a herbicide glucoside. J Biol Chem 271:29666–29671

    Article  CAS  PubMed  Google Scholar 

  • Lee H-I, Raskin I (1998) Glucosylation of salicylic acid in Nicotiana tabacum cv. Xanthi-nc. Phytopathology 88:692–697

    CAS  Google Scholar 

  • Lee H-I, Raskin I (1999) Purification, cloning, and expression of a pathogen inducible UDP-glucose:salicylic acid glucosyltransferase from tobacco. J Biol Chem 274:36637–36642

    Article  CAS  PubMed  Google Scholar 

  • Lehmann H, Glund K (1986) Abscisic acid metabolism-vacuolar/extravacuolar distribution of metabolites. Planta 168:559–562

    Article  CAS  Google Scholar 

  • Li Z-S, Zhao Y, Rea PA (1995) Magnesium adenosine 5′-trisphosphate-energized transport of glutathione S-conjugates by plant vacuolar membrane vesicles. Plant Physiol 107:1257–1268

    CAS  PubMed  Google Scholar 

  • Liu G, Sánchez-Fernández R, Li Z-S, Rea PA (2001) Enhanced multispecificity of Arabidopsis vacuolar multidrug resistance-associated protein-type ATP-binding cassette transporter, AtMRP2. J Biol Chem 276:8648–8656

    Article  CAS  PubMed  Google Scholar 

  • Malamy J, Carr JP, Klessig DF, Raskin I (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to tobacco mosaic virus. Science 250:1002–1004

    CAS  Google Scholar 

  • Malamy J, Hennig J, Klessig DF (1992) Temperature-dependent induction of salicylic acid and its conjugates during the resistance response to tobacco mosaic virus infection. Plant Cell 4:359–366

    Article  CAS  PubMed  Google Scholar 

  • Martinoia E, Grill E, Tommasini R, Kreuz K, Amrhein N (1993) ATP-dependent glutathione S-conjugate ‘export’ pump in the vacuolar membrane of plants. Nature 364:247–249

    Article  CAS  Google Scholar 

  • Martinoia E, Klein M, Geisler M, Sánchez-Fernández R, Rea PA (2000) Vacuolar transport of secondary metabolites and xenobiotics. In: Robinson DG, Rogers JC (eds) Vacuolar compartments. Sheffield Academic, Sheffield, pp 221–253

    Google Scholar 

  • Matern U, Reichenbach C, Heller W (1986) Efficient uptake of flavonoids into parsley (Petroselinum hortense) vacuoles requires acylated glycosides. Planta 167:183–189

    Article  CAS  Google Scholar 

  • Métraux JP, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin J, Raschdorf K, Schmid E, Blum W, Inverardi B (1990) Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250:1004–1006

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Oba K, Conn EE, Canut H, Boudet AM (1981) Subcellular localization of 2-(β-D-glucosyloxy)-cinnamic acids and related β-glucosidase in leaves of Melilotus alba Desr. Plant Physiol 68:1359–1363

    CAS  Google Scholar 

  • Poole RJ, Mehlhorn RJ, Packer L (1985) A study of transport in tonoplast vesicles using spin-labelled probes. In: Marin B (ed) Biochemistry and function of adenosine triphosphatase in fungi and plants. Springer, Berlin Heidelberg New York, pp 114–118

    Google Scholar 

  • Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol 43:439–463

    Article  CAS  Google Scholar 

  • Raskin I (1995) Salicylic acid. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer Academic, Dordrecht, pp 188–205

    Google Scholar 

  • Raskin I, Ehmann A, Melander WR, Meeuse BJD (1987) Salicylic acid: a natural inducer of heat production in Arum lilies. Science 237:1601–1602

    CAS  Google Scholar 

  • Raskin I, Skubatz H, Tang W, Meeuse BJD (1990) Salicylic acid levels in thermogenic and non-thermogenic plants. Ann Bot 66:369–373

    CAS  Google Scholar 

  • Rataboul P, Alibert G, Boller T, Boudet AM (1985) Intracellular transport and vacuolar accumulation of o-coumaric acid glucoside in Melitolus alba mesophyll cell protoplasts. Biochim Biophys Acta 816:25–36

    CAS  Google Scholar 

  • Rea PA (1999) MRP subfamily ABC transporters from plants and yeast. J Exp Bot 50:895–913

    Article  CAS  Google Scholar 

  • Rea PA, Sanders D (1987) Tonoplast energization: two H+ pumps, one membrane. Physiol Plant 71:131–141

    CAS  Google Scholar 

  • Rea PA, Griffith CJ, Manolson MF, Sanders D (1987) Inhibition of tonoplast H+-ATPase by chaotropic anions: evidence for peripheral location of nucleotide-binding subunits. Biochim Biophys Acta 904:1–12

    CAS  Google Scholar 

  • Rea PA, Britten CJ, Sarafian V (1992) Common identity of substrate-binding subunit of vacuolar H+-translocating inorganic pyrophosphatase of plant cells. Plant Physiol 100:723–732

    CAS  Google Scholar 

  • Rea PA, Li Z-S, Lu Y-P, Drozdowicz YM, Martinoia E (1998) From vacuolar GS-X pumps to multispecific ABC transporters. Annu Rev Plant Physiol Plant Mol Biol 49:727–760

    Article  CAS  PubMed  Google Scholar 

  • Schmitt R, Sandermann H Jr (1982) Specific localization of β-D-glucoside conjugates of 2,4-dichlorophenoxyacetic acid in soybean vacuoles. Z Naturforsch 37:772–777

    Google Scholar 

  • Schulz M, Schnabl H, Manthe B, Schweihofen B, Casser I (1993) Uptake and detoxification of salicylic acid by Vicia faba and Fagopyrum esculentum. Phytochemistry 33:291–294

    Article  CAS  Google Scholar 

  • Seskar M, Shulaev V, Raskin I (1998) Endogenous methyl salicylate in pathogen-inoculated tobacco plants. Plant Physiol 116:387–392

    Article  CAS  Google Scholar 

  • Shettel NL, Balke NE (1983) Plant growth response to several allelopathic chemicals. Weed Sci 31:293–298

    CAS  Google Scholar 

  • Shulaev V, Silverman P, Raskin I (1997) Airborne signaling by methyl salicylate in plant pathogen resistance. Nature 385:718–721

    Article  CAS  Google Scholar 

  • Siegrist J, Jeblick W, Kauss H (1994) Defense responses in infected and elicited cucumber (Cucumis sativus L.) hypocotyl segments exhibiting acquired resistance. Plant Physiol 105:1365–1374

    CAS  PubMed  Google Scholar 

  • Silverman P, Seskar M, Kanter D, Schweizer P, Métraux J-P, Raskin I (1995) Salicylic acid in rice: biosynthesis, conjugation, and possible role. Plant Physiol 108:633–639

    CAS  PubMed  Google Scholar 

  • Simcox PD, Reid EE, Canvin DT, Dennis DT (1977) Enzymes of the glycolytic and pentose phosphate pathways in proplastids from the developing endosperm of Ricinus communis L. Plant Physiol 59:1128–1132

    CAS  Google Scholar 

  • Taguchi G, Fujikawa S, Yazawa T, Kodaira R, Hayashida N, Shimosaka M, Okazaki M (2000) Scopoletin uptake from culture medium and accumulation in the vacuoles after conversion to scopolin in 2,4-D-treated tobacco cells. Plant Sci 151:153–161

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Hayakawa K, Umetani Y, Tabata M (1990) Glucosylation of isomeric hydroxybenzoic acids by cell suspension cultures of Mallotus japonicus. Phytochemistry 29:1555–1558

    Article  CAS  Google Scholar 

  • Walczak HA, Dean JV (2000) Vacuolar transport of the glutathione conjugate of trans-cinnamic acid. Phytochemistry 53:441–446

    Article  CAS  PubMed  Google Scholar 

  • Werner C, Matile P (1985) Accumulation of coumarylglucosides in vacuoles of barley mesophyll protoplasts. J Plant Physiol 118:237–249

    CAS  Google Scholar 

  • Yazaki K, Inushima K, Kataoka M, Tabata M (1995) Intracellular localization of UDPG: p-hydroxybenzoate glucosyltransferase and its reaction product in Lithospermum cell cultures. Phytochemistry 38:1127–1130

    Article  CAS  Google Scholar 

  • Zhen R-G, Kim EJ, Rea PA (1994) Localization of cytosolically oriented maleimide-reactive domain of vacuolar H+-pyrophosphatase. J Biol Chem 269:23342–23350

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The tobacco and soybean cell cultures were kindly provided by Dr. Joe Chappell at the University of Kentucky and Dr. Jack Widholm at the University of Illinois (Champaign-Urbana), respectively. This work was supported by an NSF award (Number IBN-0114131) to JVD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John V. Dean.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dean, J.V., Mohammed, L.A. & Fitzpatrick, T. The formation, vacuolar localization, and tonoplast transport of salicylic acid glucose conjugates in tobacco cell suspension cultures. Planta 221, 287–296 (2005). https://doi.org/10.1007/s00425-004-1430-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1430-3

Keywords

Navigation