Skip to main content

Advertisement

Log in

Recent advances in pharmacological, hormonal, and nutritional intervention for sarcopenia

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Sarcopenia, the age-related loss of skeletal muscle mass, is characterized by a deterioration of muscle quantity and quality leading to a gradual slowing of movement, a decline in strength and power, increased risk of fall-related injury, and often frailty. This review focuses on the recent advances of pharmacological, hormonal, and nutritional approaches for attenuating sarcopenia. The article is composed of the data reported in many basic and some clinical studies for mammalian muscles. Resistance training combined with amino acid-containing supplements is the gold standard to prevent sarcopenia. Supplementation with proteins (amino acids) only did not influence sarcopenic symptoms. A myostatin-inhibiting strategy is the most important candidate to prevent sarcopenia in humans. Milder caloric restriction (CR, 15–25%) would also be effective for age-related muscle atrophy in humans. Supplementation with ursolic acid and ghrelin is an intriguing candidate to combat sarcopenia, although further systematic and fundamental research is needed on this treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Akamizu T, Kangawa K (2010) Ghrelin for cachexia. J Cachexia Sarcopenia Muscle 1:169–176

    Article  PubMed  PubMed Central  Google Scholar 

  2. Annweiler C, Schott AM, Berrut G, Fantino B, Beauchet O (2009) Vitamin D-related changes in physical performance: a systemic review. J Nutr Health Aging 13:893–898

    Article  CAS  PubMed  Google Scholar 

  3. Arnold SV, Spertus JA, Masoudi FA, Daugherty SL, Maddox TM, Li Y, Dodson JA, Cha PS (2013) Beyond medication prescription as performance measures: optimal secondary prevention medication dosing after acute myocardial infarction. J Am Coll Cardiol 62:1791–1801

    Article  PubMed  Google Scholar 

  4. Bach MA, Rockwood K, Zetterberg C, Thamsborg G, Hébert R, Devogelaer JP, Christiansen JS, Rizzoli R, Ochsner JL, Beisaw N, Gluck O, Yu L, Schwab T, Farrington J, Taylor AM, Ng J, Fuh V, MK 0677 Hip Fracture Study Group (2004) The effects of MK-0677, an oral growth hormone secretagogue, in patients with hip fracture. J Am Geriatr Soc 52:516–523

    Article  PubMed  Google Scholar 

  5. Baehr LM, Furlow JD, Bodine SC (2011) Muscle sparing in muscle RING finger 1 null mice: response to synthetic glucocorticoids. J Physiol 589:4759–4776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bai Y, Hu Y, Zhao Y, Yu X, Xu J, Hua Z, Zho Z (2017) Anamorelin for cancer anorexia-cachexia syndrome: a systematic review and meta-analysis. Support Care Cancer 25:1651–1659

    Article  PubMed  Google Scholar 

  7. Baker DJ, Betik AC, Krause DJ, Hepple RT (2006) No decline in skeletal muscle oxidative capacity with aging in long-term calorically restricted rats: effects are independent of mitochondrial DNA integrity. J Gerontol Ser A Biol Sci Med Sci 61:675–684

    Article  Google Scholar 

  8. Bakhshi V, Elliott M, Gentili A, Godschalk M, Mulligan T (2000) Testosterone improves rehabilitation outcomes in ill older men. J Am Geriatr Soc 48:550–553

    Article  CAS  PubMed  Google Scholar 

  9. Beaudart C, Dawson A, Shaw SC, Harvey NC, Kanis JA, Binkley N et al (2017) Nutrition and physical activity in the prevention and treatment of sarcopenia: systematic review. Osteopor Int 28:1817–1833

    Article  CAS  Google Scholar 

  10. Béchet DM, Ferrara MJ, Mordier SB, Roux MP, Deval CD, Obled A (1991) Expression of lysosomal cathepsin B during calf myoblast-myotube differentiation. Characterization of a cDNA encoding bovine cathepsin B. J Biol Chem 266:14104–14112

    PubMed  Google Scholar 

  11. Becker C, Lord SR, Studenski SA, Warden SJ, Dielding RA, Recknor CP, Hochberg MC, Ferrari SL, Blain H, Binder EF, Rolland Y, Poiraudeau S, Benson CT, Myers SL, Hu L, Ahmad QI, Pacuch KR, Gomez EV, Benichou O, STEADY Group (2015) Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial. Lancet Diabetes Endocrinol 3:948–957

    Article  CAS  PubMed  Google Scholar 

  12. Benoit B, Meugnier E, Castelli M, Chanon S, Vieille-Marchiset A, Durand C, Bendridi N, Pesenti S, Monternier PA, Durieux AC, Freyssenet D, Rieusset J, Lefai E, Vidal H, Ruzzin J (2017) Fibroblast growth factor 19 regulates skeletall muscle mass and ameliorates muscle wasting in mice. Nature Med 23:990–996

    CAS  PubMed  Google Scholar 

  13. Bhasin S, Calof O, Storer TW, Lee ML, Mazer NA, Jasuja R, Montori VM, Gao W, Dalton JT (2006) Drug insight: testosterone and selective androgen receptor modulators as anabolic therapies for physical dysfunction in chronic illness and ageing. Nat Clin Pract Endocrinol Metab 2:146–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708

    Article  CAS  PubMed  Google Scholar 

  15. Bonetto A, Penna F, Muscaritoli M, Minero VG, Rossi Fanelli F, Baccino FM, Cpstelli P (2009) Are antioxidants useful for treating skeletal muscle atrophy? Free Radic Biol Med 47:906–916

    Article  CAS  PubMed  Google Scholar 

  16. Boots AW, Haenen GR, Bast A (2008) Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 585:325–337

    Article  CAS  PubMed  Google Scholar 

  17. Bunout D, Barrera G, De La Maza MP, Leiva L, Backhouse C, Hirsch S (2009) Effects of enalapril or nifedipine on muscle strength or functional capacity in elderly subjects. A double blind trial J Renin Angiotensin Aldosterone Syst 10:77–84

    Article  CAS  PubMed  Google Scholar 

  18. Carlson ME, Hsu M, Conboy IM (2008) Imbalance between pSmad3 and Notch induces CDK inhibitors is old muscle stem cells. Nature 454:528–532

    Article  CAS  PubMed  Google Scholar 

  19. Carnio S, LoVerso F, Baraibar MA, Longa E, Khan MM, Maffei M, Reischl M, Canepari M, Loefler S, Kern H, Blaauw B, Friguet B, Bottinelli R, Rudolf R, Sandri M (2014) Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Rep 8:1509–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Castellano JM, Sanz G, Fuster V (2014) Evolution of the polypill concept and ongoing clinical trials. Can J Cardiol 30:520–526

    Article  PubMed  Google Scholar 

  21. Cerullo F, Gambassi G, Cesari M (2012) Rationale for antioxidant supplementation in sarcopenia. J Aging Res 2012:316943

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cesari M, Incalzi RA, Zamboni V, Pahor M (2011) Vitamin D hormone: a multitude of actions potentially influencing the physical function decline in older persons. Geriatr Gerontol Int 11:133–142

    Article  PubMed  Google Scholar 

  23. Chan MC, Arany Z (2014) The many roles of PGC-1α in muscle—recent developments. Metabolism 63:441–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Clavel S, Coldefy AS, Kurkdjian E, Salles J, Margaritis I, Derijard B (2006) Atrophy-related ubiquitin ligases, atrogin-1 and MuRF1 are up-regulated in aged rat tibialis anterior muscle. Mech Ageing Dev 127:794–801

    Article  CAS  PubMed  Google Scholar 

  25. Colman RJ, Beasley TM, Kemnitz JW, Johnson SC, Weindruch R, Anderson RM (2014) Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat Commun 5:3557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Cong H, Sun L, Liu C, Tien P (2011) Inhibition of atrogin-1/MAFbx expression by adenovirus-delivered small hairpin RNAs attenuates muscle atrophy in fasting mice. Hum Gene Ther 22:313–324

    Article  CAS  PubMed  Google Scholar 

  27. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinková E, Vandewoude M, Zamboni M (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing 39:412–423

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cuervo AM (2004) Autophagy: many paths to the same end. Mol Cell Biochem 263:55–72

    Article  CAS  Google Scholar 

  29. Cuervo AM, Bergamini E, Brunk UT, Dröge W, Efrench M, Terman A (2005) Autophagy and aging: the importance of maintaining “clean” cells. Autophagy 1:131–140

    Article  PubMed  Google Scholar 

  30. Dayal M, Sammel MD, Zhao J, Hummel AC, Vandenbourne K, Barnhart KT (2005) Supplementation with DHEA: effect on muscle size, strength, quality of life, and lipids. J Women's Health 14:391–400

    Article  Google Scholar 

  31. Demontis F, Perrimon N (2010) FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 143:813–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. DeRuisseau KC, Kavazis AN, Powers SK (2005) Selective downregulation of ubiquitin conjugation cascade mRNA occurs in the senescent rat soleus muscle. Exp Gerontol 40:526–531

    Article  CAS  PubMed  Google Scholar 

  33. Dickinson JM, Reidy PT, Gundermann DM, Borack MS, Walker DK, D'Lugos AC, Volpi E, Rasmussen BB (2017) The impact of postexercise essential amino acid ingestion on the ubiquitin proteasome and autophagosomal-lysosomal systems in skeletal muscle of older men. J Appl Physiol 122:620–630

    Article  PubMed  Google Scholar 

  34. Dillon EL, Sheffield-Moore M, Paddon-Jones D, Gilkison C, Sanford AP, Casperson SL, Jiang J, Chinkes DL, Urban RJ (2009) Amino acid supplementation increases lean body mass, basal muscle protein synthesis, and insulin-like growth factor-I expression in older women. J Clin Endocrinol Metab 94:1630–1637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dirks AJ, Leeuwenburgh C (2004) Aging and lifelong calorie restriction result in adaptations of skeletal muscle apoptosis repressor, apoptosis-inducing factor, X-linked inhibitor of apoptosis, caspase-3, and caspase-12. Free Radic Biol Med 36:27–39

    Article  CAS  PubMed  Google Scholar 

  36. Dixit VD, Schaffer EM, Pyle RS, Collins GD, Sakthivel SK, Palaniappan SR, Lillard JW Jr, Taub DD (2004) Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. J Clin Invest 114:57–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dössegger L, Aldor E, Baird MG, Braun S, Cleland JG, Donaldson R, Jansen LJ, Joy MD, Marin-Neto JA, Noguiera E, Stahnke PL, Storm T (1993) Influence of angiotensin converting enzyme-inhibition on exercise performance and clinical symptoms in chronic heart-failure—a multicenter, double-blind, placebo-controlled trial. Eur Heart J 14:18–23

    Article  PubMed  Google Scholar 

  38. Dreyer HC, Drummond MJ, Pennings B, Fujita S, Glynn EL, Chinkes DL (2008) Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am J Physiol Endocrinol Metab 294:E392–E400

    Article  CAS  PubMed  Google Scholar 

  39. Drummond MJ, Dreyer HC, Pennings B, Fry CS, Dhanani S, Dillon EL, Sheffield-Moore M, Volpi E, Rasmussen BB (2008) Skeletal muscle protein anabolic response to resistance exercise and essential amino acids is delayed with aging. J Appl Physiol 104:1452–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Edström E, Altun M, Hägglund M, Ulfhake B (2006) Atrogin-1/MAFbx and MuRF1 are downregulated in ageing-related loss of skeletal muscle. J Gerontol Series A Biol Sci Med Sci 61:663–674

    Article  Google Scholar 

  41. Esmarck B, Andersen JL, Olsen S, Richter EA, Mizuno M, Kjaer M (2005) Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. J Physiol 535:301–311

    Article  Google Scholar 

  42. Faulkner KA, Cauley JA, Zmuda JM, Landsittel DP, Newman AB, Studenski SA, Redfern MS, Ensrud KE, Fink HA, Lane NE, Nevitt MC (2006) Higher 1,25-dihydroxyvitamin D3 concentrations associated with lower fall rates in older community-dwelling women. Osteoporos Int 17:1318–1328

    Article  CAS  PubMed  Google Scholar 

  43. Feldman HA, Longcope C, Derby CA, Johannes CB, Araujo AB, Coviello AD, Bremner WJ, McKinlay JB (2002) Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab 87:589–598

    Article  CAS  PubMed  Google Scholar 

  44. Ferrando AA, Sheffield-Moore M, Yeckel CW, Gilkison C, Jiang J, Achacosa A, Lieberman SA, Tipton K, Wolfe RR, Urban RJ (2002) Testosterone administration to older men improves muscle function: molecular and physiological mechanisms. Am J Physiol Endocrinol Metab 282:E601–E607

    Article  CAS  PubMed  Google Scholar 

  45. Fulgoni VL III (2008) Current protein intake in America. Analysis of the National Health and Nutrition Examination Survey, 2003-2004. Am J Clin Nutr 87:1554S–1557S

    CAS  PubMed  Google Scholar 

  46. Gaugler M, Brown A, Merrell E, DiSanto-Rose M, Rathmacher JA, Reynolds TH 14th (2011) PKB signaling and atrogene expression in skeletal muscle of aged mice. J Appl Physiol 111:192–199

  47. Garcia LA, King KK, Ferrini MG, Norris KC, Artaza JN (2011) 1,25(OH)2 vitamin D3 stimulates myogenic differentiation by inhibiting cell proliferation and modulating the expression of promyogenic growth factors and myostatin in C2C12 skeletal muscle cells. Endocrinology 152:2976–2986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Godard MP, Williamson DL, Trappe SW (2002) Oral amino-acid provision does not affect muscle strength or size gains in older men. Med Sci Sports Exerc 34:1126–1131

    Article  CAS  PubMed  Google Scholar 

  49. Gouspillou G, Hepple RT (2013) Facts and controversies in our understanding of how caloric restriction impacts the mitochondrion. Exp Biol 48:1075–1084

    CAS  Google Scholar 

  50. Hancock CR, Han DH, Higashida K, Kim SH, Holloszy JO (2001) Does calorie restriction induce mitochondrial biogenesis? FASEB J 25:785–791

    Article  CAS  Google Scholar 

  51. Harikumar KB, Aggarwal BB (2008) Resveratrol: a multi-targeted agent for age-associated chronic diseases. Cell Cycle 7:1020–1035

    Article  CAS  PubMed  Google Scholar 

  52. Henderson GC, Irving BA, Nair KS (2009) Potential application of essential amino acid supplementation to treat sarcopenia in elderly people. J Clin Endocrinol Metab 94:1524–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Holzbaur EL, Howland DS, Weber N, Wallace K, She Y, Kwak S, Tchistiakova LA, Murphy E, Hinson J, Karim R, Tan XY, Kelley P, McGill KC, Williams G, Hobbs C, Doherty P, Zaleska MM, Pangalos MN, Walsh FS (2006) Myostatin inhibition slows muscle atrophy in rodent models of amyotrophic lateral sclerosis. Neurobiol Dis 23:697–707

    Article  CAS  PubMed  Google Scholar 

  54. Hultström M (2015) Caloric restriction reduces age-related but not all-cause mortality. Acta Physiol 214:3–5

    Article  CAS  Google Scholar 

  55. Hwee DT, Baehr LM, Philp A, Baar K, Bodine SC (2014) Maintenance of muscle mass and load-induced growth in Muscle RING Finger 1 null mice with age. Aging Cell 13:92–101

    Article  CAS  PubMed  Google Scholar 

  56. Kerstetter JE, O’Brien KO, Insogna KL (2003) Low protein intake. The impact on calcium and bone homeostasis in humans. J Nutr 133:855S–861S

    Article  CAS  PubMed  Google Scholar 

  57. Kojima M, Kangawa K (2004) Ghrelin: structure and function. Physiol Rev 85:495–522

    Article  CAS  Google Scholar 

  58. Kunkel SD, Suneja M, Ebert SM, Bongers KS, Fox DK, Malmberg SE, Alipour F, Shields RK, Adams CM (2011) mRNA expression signatures of human skeletal muscle atrophy identify a natural compound that increases muscle mass. Cell Metab 13:627–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lanza IR, Zabielski P, Klaus KA, Morse DM, Heppelmann CJ, Bergen HR 3rd, Dasari S, Walrand S, Short KR, Johnson ML, Robinson MM, Schimke JM, Jakaitis DR, Asmann YW, Sun Z, Nair KS (2012) Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis. Cell Metab 16:777–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lebrasseur NK, Schelhorn TM, Bernardo BL, Cosgrove PG, Loria PM, Brown TA (2009) Myostatin inhibition enhances the effects on performance and metabolic outcomes in aged mice. J Gerontol Series A Biol Sci Med Sci 64:940–948

    Article  CAS  Google Scholar 

  61. Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey L, Price SR, Mitch WE, Goldberg AL (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18:39–51

    Article  CAS  PubMed  Google Scholar 

  62. Lee SJ (2004) Regulation of muscle mass by myostatin. Ann Rev Cell Dev Biol 20:61–86

    Article  CAS  Google Scholar 

  63. Léger B, Derave W, De Bock K, Hespel P, Russell AP (2008) Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation. Rejuvenat Res 11:163–175B

    Article  CAS  Google Scholar 

  64. Maggio M, Ceda GP, Lauretani F, Pahor M, Bandinelli S, Najjar SS, Ling SM, Basaria S, Ruggiero C, Valenti G, Ferrucci L (2006) Relation of angiotensin converting enzyme inhibitor treatment to insulin-like growth factor-1 serum levels in subjects > 65 years of age (the InCHIANTI study). Am J Cardiol 97:1525–1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Marzetti E, Hwang JC, Lees HA, Wohlgemuth SE, Dupont-Versteegden EE, Carter CS, Bernabei R, Leeuwenburgh C (2010) Mitochondrial death effectors: relevance to sarcopenia and disuse muscle atrophy. Biochim Biophys Acta 1800:235–244

    Article  CAS  PubMed  Google Scholar 

  66. Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, Herbert RL, Longo DL, Allison DB, Young JE, Bryant M, Barnard D, Ward WF, Qi W, Ingram DK, de Cabo R (2012) Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489:318–322

    Article  CAS  PubMed  Google Scholar 

  67. McKay BR, Ogborn DI, Bellamy LM, Tarnopolsky MA, Parise G (2012) Myostatin is associated with age-related human muscle stem cell dysfunction. FASEB J 26:2509–2521

    Article  CAS  PubMed  Google Scholar 

  68. McKiernan SH, Colman RJ, Lopez M, Beasley TM, Aiken JM, Anderson RM, Weindruch R (2011) Caloric restrictin delays aging-induced cellular phenotypes in rhesus monkey skeletal muscle. Exp Gerontol 46:23–29

    Article  CAS  PubMed  Google Scholar 

  69. McKiernan SH, Colman RJ, Aiken E, Evans TD, Beasley TM, Aiken JM, Weindruch R, Anderson RM (2012) Cellular adaptation contributes to calorie restriction-induced preservation of skeletal muscle in aged rhesus monkeys. Exp Gerontol 47:229–236

    Article  CAS  PubMed  Google Scholar 

  70. McMullen CA, Ferry AL, Gamboa JL, Andrade FH, Dupont-Versteegden EE (2009) Age-related changes of cell death pathways in rat extraocular muscle. Exp Gerontol 44:420–425

    Article  CAS  PubMed  Google Scholar 

  71. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    Article  CAS  PubMed  Google Scholar 

  72. Moon HY, Becke A, Berron D, Becker B, Sah N, Benoni G, Janke E, Lubejko ST, Greig NH, Mattison JA, Duzel E, van Praag H (2016) Running-induced systemic cathepsin B secretion is associated with memory function. Cell Metab 24:332–340

    Article  CAS  PubMed  Google Scholar 

  73. Morley JE, Abbatecola AM, Argiles JM, Baracos V, Bauer J, Bhasin S, Cederholm T, Coats AJ, Cummings SR, Evans WJ, Fearon K, Ferrucci L, Fielding RA, Guralnik JM, Harris TB, Inui A, Kalantar-Zadeh K, Kirwan BA, Mantovani G, Muscaritoli M, Newman AB, Rossi-Fanelli F, Rosano GM, Roubenoff R, Schambelan M, Sokol GH, Storer TW, Vellas B, von Haehling S, Yeh SS, Anker SD, Society on Sarcopenia, Cachexia and Wasting Disorders Trialist Workshop (2011) Sarcopenia with limited mobility: an international consensus. J Am Med Dir Assoc 12:403–409

    Article  PubMed  PubMed Central  Google Scholar 

  74. Murphy KT, Ryall JG, Snell SM, Nair L, Koopman R, Krasney PA, Ibebunjo C, Holden KS, Loria PM, Salatto CT, Lynch GS (2010a) Antibody-directed myostatin inhibition improves diaphragm pathology in young but not adult dystrophic mdx mice. Am J Pathol 176:2425–2434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Murphy KT, Koopman R, Naim T, Léger B, Trieu J, Ikebunjo C, Lynch GS (2010b) Antibody-directed myostatin inhibition in 21-mo-old mice reveals novel roles for myostatin signaling in skeletal muscle structure and function. FASEB J 24:4433–4442

    Article  CAS  PubMed  Google Scholar 

  76. Murphy KT, Chee A, Gleeson BG, Naim T, Swiderski K, Koopman R, Lynch GS (2011) Antibody-directed myostatin inhibition enhances muscle mass and function in tumor-bearing mice. Am J Physiol Regul Integr Comp Physiol 301:R716–R726

    Article  CAS  PubMed  Google Scholar 

  77. Nagaya N, Moriya J, Yasumura Y, Uematsu M, Ono F, Shimizu W, Ueno K, Kitakaze M, Miyatake K, Kangawa K (2004) Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure. Circulation 110:3674–3679

    Article  CAS  PubMed  Google Scholar 

  78. Nagaya N, Itoh T, Murakami S, Oya H, Uematsu M, Miyatake K, Kangawa K (2005) Treatment of cachexia with ghrelin in patients with COPD. Chest 128:1187–1193

    Article  CAS  PubMed  Google Scholar 

  79. Nair KS, Woolf PD, Welle SL, Matthews DE (1987) Leucine, glucose, and energy metabolism after 3 days of fasting in health human subjects. Am J Clin Nutr 46:557–562

    Article  CAS  PubMed  Google Scholar 

  80. Nass R, Gaylinn BD, Thorner MO (2011) The ghrelin axis in disease: potential therapeutic indications. Mol Cell Endocrinol 340:106–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Neel BA, Lin Y, Pessin JE (2013) Skeletal muscle autophagy: a new metabolic regulator. Trends Endocrinol Metab 24:635–643

    Article  CAS  PubMed  Google Scholar 

  82. Nicastro H, Artioli GG, Dos Santos CA, Sollis MY, Da Luz CR, Blachier F, Lancha AH Jr (2011) An overview of the therapeutic effects of leucine supplementation on skeletal muscle under atrophic conditions. Amino Acids 40:287–300

    Article  CAS  PubMed  Google Scholar 

  83. Norton LE, Layman DK (2006) Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. J Nutr 136:533S–537S

    Article  CAS  PubMed  Google Scholar 

  84. Onder G, Penninx BW, Balkrishnan R, Fried LP, Chaves PH, Williamson J, Carter C, Di Bari M, Guralnik JM, Pahor M (2002) Relation between use of angiotensin-converting enzyme inhibitors and muscle strength and physical function in older women: an observational study. Lancet 359:926–930

    Article  CAS  PubMed  Google Scholar 

  85. Park C, Cuervo AM (2013) Selective autophagy: talking with the UPS. Cell Biochem Biophys 67:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pietra C, Takeda Y, Tazawa-Ogata N, Minami M, Yuanfeng X, Duus EM, Northrup R (2014) Anamorelin HCl (ONO-7643), a novel ghrelin receptor agonist, for the treatment of cancer anorexia-cachexia syndrome: preclinical profile. J Cachexia Sarcopenia Muscle 5:329–337

    Article  PubMed  PubMed Central  Google Scholar 

  87. Raue U, Slivka D, Jemiolo B, Hollon C, Trappe S (2007) Proteolytic gene expression differs at rest and after resistance exercise between young and old women. J Gerontol Series A Biol Sci Med Sci 62:1407–1412

    Article  Google Scholar 

  88. Sakuma K, Yamaguchi A (2010) Molecular mechanisms in aging and current strategies to counteract sarcopenia. Curr Aging Sci 3:90–101

    Article  CAS  PubMed  Google Scholar 

  89. Sakuma K, Yamaguchi A (2011) Sarcopenia: molecular mechanisms and current therapeutic strategy. In: Perloft JW, Wong AH (eds) Cell Aging. Nova Science Publisher, NY, pp 93–152

    Google Scholar 

  90. Sakuma K, Yamaguchi A (2012) Sarcopenia and cachexia: the adaptations of negative regulators of skeletal muscle mass. J Cachexia Sarcopenia Muscle 3:77–94

    Article  PubMed  PubMed Central  Google Scholar 

  91. Sakuma K, Aoi W, Yamaguchi A (2015) Current understanding of sarcopenia: possible candidates modulating muscle mass. Pflügers Arch 467:213–229

    Article  CAS  PubMed  Google Scholar 

  92. Sakuma K, Kinoshita M, Ito Y, Aizawa M, Aoi W, Yamaguchi A (2016) p62/SQSTM1 but not LC3 is accumulated in sarcopenic muscle of mice. J Cachexia Sarcopenia Muscle 7:204–212

    Article  PubMed  Google Scholar 

  93. Sakuma K, Aoi W, Yamaguchi A (2017) Molecular mechanism of sarcopenia and cachexia: recent research advances. Pflügers Arch 469:573–591

    Article  CAS  PubMed  Google Scholar 

  94. Sanders KM, Stuart AL, Williamson EJ, Simpson JA, Kotowicz MA, Young D, Nicholson GC (2010) Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA 303:1815–1822

    Article  CAS  PubMed  Google Scholar 

  95. Sandri M (2010) Autophagy in health and disease. 3. Involvement of autophagy in muscle atrophy. Am J Physiol Cell Physiol 298:C1291–C1297

    Article  CAS  PubMed  Google Scholar 

  96. Sandri M (2011) New findings of lysosomal proteolysis in skeletal muscle. Curr Opin Clin Nutr Metab Care 14:223–229

    Article  CAS  PubMed  Google Scholar 

  97. Sandri M, Barberi L, Bijlsma AY, Blaauw B, Dyar KA, Milan G, Mammucari C, Meskers CG, Pallafacchina G, Paoli A, Pion D, Roceri M, Romanello V, Serrano AL, Toniolo L, Larsson L, Maier AB, Muñoz-Cánoves P, Musarò A, Pende M, Reggiani C, Rizzuto R, Schiaffino S (2013) Signaling pathways regulating muscle mass in ageing skeletal muscle. The role of IGF-1-Akt-mTOR-FoxO pathway. Biogerontology 14:303–323

    Article  CAS  PubMed  Google Scholar 

  98. Sato Y, Iwamoto J, Kanoko T, Satoh K (2005) Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: a randomized controlled trial. Cerebrovasc Dis 20:187–192

    Article  CAS  PubMed  Google Scholar 

  99. Schellenbaum GD, Smith NL, Heckbert SR, Lumley T, Rea TD, Furberg CD, Psaty BM (2005) Weight loss, muscle strength, and angiotensin-converting enzyme inhibitors in older adults with congestive heart failure or hypertension. J Am Geriatr Soc 53:1996–2000

    Article  PubMed  Google Scholar 

  100. Shaid S, Brandts CH, Serve H, Dikic I (2013) Ubiquitination and selective autophagy. Cell Death Differ 20:21–30

    Article  CAS  PubMed  Google Scholar 

  101. Sinha-Hikim I, Cornford M, Gaytan H, Lee ML, Bhasin S (2006) Effects of testosterone supplementation on skeletal muscle fiber hypertrophy and satellite cells in community-dwelling older men. J Clin Endocrinol Metab 91:3024–3033

    Article  CAS  PubMed  Google Scholar 

  102. Snijder MB, Van Schoor NM, Pluijm SM, van Dam RM, Visser M, Lips P (2006) Vitamin D status in relation to one-year risk of recurrent falling in older men and women. J Clin Endocrinol Metab 91:2980–2985

    Article  CAS  PubMed  Google Scholar 

  103. Sumukadas D, Witham MD, Struthers AD, McMurdo ME (2007) Effect of perindopril on physical function in elderly people with functional impairment: a randomized controlled trial. CMAJ 177:867–874

    Article  PubMed  PubMed Central  Google Scholar 

  104. Temel JS, Abernethy AP, Currow DC, Friend J, Duus EM, Yan Y, Fearon KC (2016) Anamorelin in patients with non-small-cell lung cancer and cachexia (ROMANA 1 and ROMANA 2): results from two randomized, double-blind, phase 3 trials. Lancet Oncol 17:519–531

    Article  CAS  PubMed  Google Scholar 

  105. Thomas DK, Quinn MA, Saunders DH, Greig CA (2016) Protein supplementation does not significantly augment the effects of resistance exercise training in older adults: a systematic review. J Am Med Dir Assoc 17:959.e1–959.e9

    Article  Google Scholar 

  106. Timmerman KL, Volpi E (2008) Amino acid metabolism and regulatory effets in aging. Curr Opin Clin Nutr Metab Care 11:45–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Valdez G, Tapia JC, Kang H, Clemenson GD Jr, Gage FH, Lichtman JW, Sanes JR (2010) Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise. Proc Natl Acad Sci U S A 107:14863–14868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Vasilaki A, McArdle F, Iwanejko LM, McArdle A (2006) Adaptive response of mouse skeletal muscle to contractile activity: the effect of age. Mech Ageing Dev 127:830–839

    Article  CAS  PubMed  Google Scholar 

  109. von Haehling S, Morley JE, Anker SD (2010) An overview of sarcopenia: facts and numbers on prevalence and clinical impact. J Cachexia Sarcopenia Muscle 1:129–133

    Article  Google Scholar 

  110. Wakabayashi H, Sakuma K (2014) Comprehensive approach to sarcopenia treatment. Curr Clin Pharmacol 9:171–180

    Article  CAS  PubMed  Google Scholar 

  111. Walker DK, Dickinson JM, Timmerman KL, Drummond MJ, Reidy PT, Fry CS, Gundermann DM, Rasmussen BB (2011) Exercise, amino acids, and aging in the control of human muscle protein synthesis. Med Sci Sports Exerc 43:2249–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang ZH, Hsu CC, Huang CN, Yin MC (2009) Anti-glycative effects of oleanolic acid and ursolic acid in kidney of diabetic mice. Eur J Pharmacol 628:255–260

    Article  PubMed  CAS  Google Scholar 

  113. Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, Moraes CT (2009) Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci U S A 106:20405–20410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Whitman SA, Wacker MJ, Richmond SR, Godard MP (2005) Contributions of the ubiquitin-proteasome pathway and apoptosis to human skeletal muscle wasting with age. Pflügers Arch 450:437–446

    Article  CAS  PubMed  Google Scholar 

  115. Wicherts IS, van Schoor NM, Boeke AJ, Visser M, Deeg DJ, Smit J, Knol DL, Lips P (2007) Vitamin D status predicts physical performance and its decline in older persons. J Clin Endocrinol Metab 92:2058–2065

    Article  CAS  PubMed  Google Scholar 

  116. Williamson DL, Raue U, Slivka DR, Trappe S (2010) Resistance exercise, skeletal muscle FOXO3A, and 85-year-old women. J Gerontol Series A Biol Sci Med Sci 65:335–343

    Article  CAS  Google Scholar 

  117. Wohlgemuth SE, Seo AY, Marzetti E, Lees HA, Leeuwenburgh C (2010) Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise. Exp Gerontol 45:138–148

    Article  CAS  PubMed  Google Scholar 

  118. Yu R, Chen JA, Xu J, Cao J, Wang Y, Thomas SS, Hu Z (2017) Suppression of muscle wasting by the plant-derived compound ursolic acid in a model of chronic kidney disease. J Cachexia Sarcopenia Muscle 8:327–341

    Article  PubMed  Google Scholar 

  119. Zhou J, Freeman TA, Ahmad F, Shang X, Mangano E, Gao E, Farber J, Wang Y, Ma XL, Woodgett J, Vagnozzi RJ, Lal H, Force T (2013) GSK-3α is a central regulator of age-related pathologies in mice. J Clin Invest 123:1821–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a research Grant-in-Aid for Scientific Research C (No. 17K01755) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunihiro Sakuma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakuma, K., Yamaguchi, A. Recent advances in pharmacological, hormonal, and nutritional intervention for sarcopenia. Pflugers Arch - Eur J Physiol 470, 449–460 (2018). https://doi.org/10.1007/s00424-017-2077-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-017-2077-9

Keywords

Navigation