Skip to main content
Log in

Temperature effects on the kinetic properties of the rabbit intestinal oligopeptide cotransporter PepT1

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The effects of temperature on the functional properties of the intestinal oligopeptide transporter PepT1 from rabbit have been investigated using electrophysiological methods. The dipeptide Gly–Gln at pH 6.5 or 7.5 was used as substrate. Raising the temperature in the range 20–30 °C causes an increase in the maximal transport-associated current (I max) with a Q 10 close to 4. Higher temperatures accelerate the rate of decline of the presteady-state currents observed in the absence of organic substrate. The voltage dependencies of the intramembrane charge movement and of the time constant of decline are both shifted towards more negative potentials by higher temperatures. The shift is due to a stronger action of temperature on the outward rate of charge movement compared to the inward rate, indicating a lower activation energy for the latter process. Consistently, the activation energy for the complete cycle is similar to that of the inward rate of charge movement. Temperature also affects the binding rate of the substrate: the K 0.5 –V curve is shifted to more negative potentials by higher temperatures, resulting in a lower apparent affinity in the physiological range of potentials. The overall efficiency of transport, estimated as the I max /K 0.5 ratio is significantly increased at body temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beckman ML, Quick MW (2001) Substrates and temperature differentiate ion flux from serotonin flux in a serotonin transporter. Neuropharmacology 40:526–535

    Article  PubMed  CAS  Google Scholar 

  2. Binda F, Bossi E, Giovannardi S, Forlani G, Peres A (2002) Temperature effects on the presteady-state and transport-associated currents of GABA cotransporter rGAT1. FEBS Lett 512:303–307

    Article  PubMed  CAS  Google Scholar 

  3. Bossi E, Renna MD, Sangaletti R, D’Antoni F, Cherubino F, Kottra G, Peres A (2011) Residues R282 and D341 act as electrostatic gates in the proton-dependent oligopeptide transporter PepT1. J Physiol 589:495–510

    Article  PubMed  CAS  Google Scholar 

  4. Cammack JN, Rakhilin SV, Schwartz EA (1994) A GABA transporter operates asymmetrically and with variable stoichiometry. Neuron 13:949–960

    Article  PubMed  CAS  Google Scholar 

  5. De Oliveira AM, Shoemaker H, Segonzac A, Langer SZ (1989) Differences in the temperature dependence of drug interaction with the noradrenaline and serotonin transporters. Neuropharmacology 28:823–828

    Article  PubMed  Google Scholar 

  6. Eskandari S, Wright EM, Loo DDF (2005) Kinetics of the reverse mode of the Na+/glucose cotransporter. J Membr Biol 204:23–32

    Article  PubMed  CAS  Google Scholar 

  7. Fields PA (2001) Protein function at thermal extremes: balancing stability and flexibility. Comp Biochem Physiol [A] 129:417–431

    CAS  Google Scholar 

  8. Fields PA, Houseman DE (2004) Decreases in activation energy and substrate affinity in cold-adapted A4-lactate dehydrogenase: evidence from the Antarctic Notothenioid fish Chaenocephalus aceratus. Mol Biol Evol 21:2246–2255

    Article  PubMed  CAS  Google Scholar 

  9. Galarza-Munoz G, Soto-Morales SI, Holmgren M, Rosenthal JJ (2011) Physiological adaptation of an Antarctic Na+/K+-ATPase to the cold. J Exp Biol 214:2164–2174

    Article  PubMed  CAS  Google Scholar 

  10. Giovannardi S, Fesce R, Bossi E, Binda F, Peres A (2003) Cl effects on the function of the GABA cotransporter rGAT1 preserve the mutual relation between transient and transport currents. CMLS 60:550–556

    Article  PubMed  CAS  Google Scholar 

  11. Guastella J, Nelson N, Nelson H, Czyzyc L, Keynan S, Miedel MC, Davidson N, Lester HA, Kanner BI (1990) Cloning and expression of a rat brain GABA transporter. Science 249:1303–1306

    Article  PubMed  CAS  Google Scholar 

  12. Hazama A, Loo DDF, Wright EM (1997) Presteady-state currents of the rabbit Na+/glucose cotransporter (SGLT1). J Membr Biol 155:175–186

    Article  PubMed  CAS  Google Scholar 

  13. Hediger MA, Coady MJ, Ikeda TS, Wright EM (1987) Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature 330:379–381

    Article  PubMed  CAS  Google Scholar 

  14. Hilgemann DW, Lu C-C (1999) GAT1 (GABA:Na+:Cl-) cotransport function. Database reconstruction with an alternating access model. J Gen Physiol 114:459–475

    Article  PubMed  CAS  Google Scholar 

  15. Kottra G, Frey I, Daniel H (2009) Inhibition of intracellular dipeptide hydrolysis uncovers large outward transport currents of the peptide transporter PEPT1 in Xenopus oocytes. Pflug Arch 457:809–820

    Article  CAS  Google Scholar 

  16. Lu C-C, Hilgemann DW (1999) GAT1 (GABA:Na+:Cl) cotransport function. Steady state studies in giant Xenopus oocyte membrane patches. J Gen Physiol 114:429–444

    Article  PubMed  CAS  Google Scholar 

  17. Maffia M, Rizzello A, Acierno R, Verri T, Rollo M, Danieli A, Doring F, Daniel H, Storelli C (2003) Characterisation of intestinal peptide transporter of the Antarctic haemoglobinless teleost Chionodraco hamatus. J Exp Biol 206:705–714

    Article  PubMed  CAS  Google Scholar 

  18. Mertl M, Daniel H, Kottra G (2008) Substrate-induced changes in the density of peptide transporter PEPT1 expressed in Xenopus oocytes. Am J Physiol Cell Physiol 295:1332–1343

    Article  Google Scholar 

  19. Nussberger S, Steel A, Trotti D, Romero MF, Boron WF, Hediger MA (1997) Symmetry of H+ binding to the intra- and extracellular side of the H+-coupled oligopeptide cotransporter PepT1. J Biol Chem 272:7777–7785

    Article  PubMed  CAS  Google Scholar 

  20. Renna MD, Oyadeyi AS, Bossi E, Kottra G, Peres A (2011) Functional and structural determinants of reverse operation in the pH-dependent oligopeptide transporter PepT1. CMLS 68:2961–2975

    Article  PubMed  CAS  Google Scholar 

  21. Renna MD, Sangaletti R, Bossi E, Cherubino F, Kottra G, Peres A (2011) Unified modeling of the mammalian and fish proton-dependent oligopeptide transporter PepT1. Channels 5:89–99

    Article  PubMed  CAS  Google Scholar 

  22. Sala-Rabanal M, Loo DDF, Hirayama BA, Turk E, Wright EM (2006) Molecular interactions between dipeptides, drugs and the human intestinal H+/oligopeptide cotransporter, hPEPT1. J Physiol 574:149–166

    Article  PubMed  CAS  Google Scholar 

  23. Sangaletti R, Terova G, Peres A, Bossi E, Corà S, Saroglia M (2009) Functional expression of the oligopeptide transporter PepT1 from the sea bass Dicentrachus labrax. Pflug Arch 459:47–54

    Article  CAS  Google Scholar 

  24. Soragna A, Bossi E, Giovannardi S, Pisani R, Peres A (2005) Relations between substrate affinities and charge equilibration rates in the GABA cotransporter rGAT1. J Physiol 562:333–345

    Article  PubMed  CAS  Google Scholar 

  25. Wadiche JI, Kavanaugh MP (1998) Macroscopic and microscopic properties of a cloned glutamate transporter/chloride channel. J Neurosci 18:7650–7661

    PubMed  CAS  Google Scholar 

  26. Zavodszky P, Kardos J, Svingor PGA (1998) Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc Natl Acad Sci USA 95:7406–7411

    Article  PubMed  CAS  Google Scholar 

  27. Zeuthen T, MacAulay N (2012) Cotransport of water by Na+-K+-2Cl- cotransporters expressed in Xenopus oocytes: NKCC1 versus NKCC2. J Physiol 590:1139–1154

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Many thanks are due to Dr. Gabor Kottra, Technische Universität München, Freising, Germany, for the kind gift of rbPepT1 cDNA, and to Dr. Raffaella Cinquetti for precious technical assistance. This work was supported by the Insubria University Research Fund to A.P. and E.B. and by the Maugeri Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Peres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bossi, E., Cherubino, F., Margheritis, E. et al. Temperature effects on the kinetic properties of the rabbit intestinal oligopeptide cotransporter PepT1. Pflugers Arch - Eur J Physiol 464, 183–191 (2012). https://doi.org/10.1007/s00424-012-1125-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1125-8

Keywords

Navigation