Skip to main content
Log in

Mappings between a macroscopic neural-mass model and a reduced conductance-based model

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We present two alternative mappings between macroscopic neuronal models and a reduction of a conductance-based model. These provide possible explanations of the relationship between parameters of these two different approaches to modelling neuronal activity. Obtaining a physical interpretation of neural-mass models is of fundamental importance as they could provide direct and accessible tools for use in diagnosing neurological conditions. Detailed consideration of the assumptions required for the validity of each mapping elucidates strengths and weaknesses of each macroscopic model and suggests improvements for future development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amari SI (1972) Characteristics of randomly connected threshold- element networks and network systems. Proc IEEE 59: 35–47

    Article  Google Scholar 

  • Amari SI (1977) Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybern 27: 77–87

    Article  CAS  PubMed  Google Scholar 

  • Bédard C, Destexhe A (2009) Macroscopic models of local field potentials and the apparent 1/f noise in brain activity. Biophys J 96: 2589–2603

    Article  PubMed  Google Scholar 

  • Bédard C, Kröger H, Destexhe A (2004) Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophys J 64: 1829–1842

    Article  Google Scholar 

  • Berry MJ, Warland DK, Meister M (1997) The structure and precision of retinal spike trains. Proc Natl Acad Sci USA 94: 5411–5416

    Article  CAS  PubMed  Google Scholar 

  • Borst A, Theunissen FE (1999) Information theory and neural coding. Nat Neurosci 2: 947–957

    Article  CAS  PubMed  Google Scholar 

  • Breakspear M, Roberts JA, Terry JR, Rodrigues S, Mahant N, Robinson PA (2006) A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb Cortex 16: 1296–1313

    Article  CAS  PubMed  Google Scholar 

  • Brunel N, Wang XJ (2003) What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J Neurophysiol 90: 415–430

    Article  PubMed  Google Scholar 

  • Chizhov AV, Rodrigues S, Terry JR (2007) A comparative analysis of a detailed neural population model and a mean-field EEG model. Phys Lett A 369: 31–36

    Article  CAS  Google Scholar 

  • Deco G, Jirsa VK, Robinson PA, Breakspear M, Friston K (2008) The dynamic brain: from spiking neurons to neural masses and cortical fields. PloS Comput Biol 4(8): e1000092

    Article  PubMed  Google Scholar 

  • Destexhe A, Sejnowski TJ (2001) Thalamocortical assemblies. How ion channels, single neurons and large-scale networks organize sleep oscillations. Oxford University Press, Oxford

    Google Scholar 

  • Destexhe A, Contreras D, Steriade M (1999) Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J Neurosci 19: 4595–4608

    CAS  PubMed  Google Scholar 

  • Ermentrout B (1994) Reduction of conductance based models with slow synapses to neural nets. Neural Comput 6: 679–695

    Article  Google Scholar 

  • Freeman WJ (1975) Mass action in the nervous system. Examination of the Neurophysiological Basis of Adaptive Behavior through the EEG. Academic Press, New York

    Google Scholar 

  • Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41: 2251–2269

    Article  CAS  PubMed  Google Scholar 

  • Gelder TV (1988) The dynamical hypothesis in cognitive science. Behav Brain Sci 21: 615–665

    Google Scholar 

  • Geman S (1982) Almost sure stable oscillations in a large system of randomly coupled equations. SIAM J Appl Math 42: 695–703

    Article  Google Scholar 

  • Gerstner W, Kistler W (2002) Spiking neuron models: single neurons, populations, plasticity. Cambridge University Press, Cambridge

    Google Scholar 

  • Graben Pb, Zhou C, Thiel M, Kurths J (2008) Lectures in supercomputational neuroscience: dynamics in complex brain networks. Springer Series: Understanding Complex Systems

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117: 500–544

    CAS  PubMed  Google Scholar 

  • Jansen BH, Rit VG (1995) Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol Cybern 73: 357–366

    Article  CAS  PubMed  Google Scholar 

  • Jirsa VK (2004) Connectivity and dynamics of neural information processing. Neuroinformatics 2(2): 183–204

    Article  PubMed  Google Scholar 

  • Jirsa VK, Haken H (1996) Field theory of electromagnetic brain activity. Phys Rev Lett 77: 960

    Article  CAS  PubMed  Google Scholar 

  • Katzner S, Nauhaus I, Benucci A, Bonin V, Ringach DL, Carandini M (2009) Local origin of field potentials in visual cortex. Neuron 61: 35–41

    Article  CAS  PubMed  Google Scholar 

  • Kiebal SJ, Garrido MI, Moran RJ, Friston KJ et al (2008) Dynamic causal modelling for EEG and MEG. Cogn Neurodyn 2: 121–136

    Article  Google Scholar 

  • Logothetis NK, Kayser C, Oeltermann A (2007) In vivo measurement of cortical impedance spectrum in monkeys: Implications for signal propagation. Neuron 55: 809–823

    Article  CAS  PubMed  Google Scholar 

  • Lopes da Silva FH, Hoeks A, Smits H, Zetterberg LH (1974) Model of brain rhythmic activity: the alpha rhythm of the thalamus. Kybernetik 15: 27–37

    Article  CAS  PubMed  Google Scholar 

  • Marreiros AC, Daunizeau J, Kiebal SJ, Friston KJ (2008) Population dynamics: variance and the sigmoid activation function. NeuroImage 42: 147–157

    Article  PubMed  Google Scholar 

  • Marten F, Rodrigues S, Benjamin O, Richardson MP, Terry JR (2009) Onset of poly-spike complexes in a mean-field model of human EEG and its application to epilepsy. (Philos Trans R Soc A) 367: 1145–1161

    Article  Google Scholar 

  • Moreno-Bote R, Parga N (2005) Simple model neurons with AMPA and NMDA filters: role of synaptic time scales. Neurocomputing 65–66: 441–448

    Article  Google Scholar 

  • Nunez PL (1995) Neocortical Dynamics and Human EEG Rhythms. Oxford University Press

  • Olivier F, Touboul J, Cessac B (2009) Constructive mean-field analysis of multi-population neural networks with random synaptic weights and stochastic inputs. Frontiers Comput Neurosci 3(1): 1–28

    Google Scholar 

  • Omurtag A, Knight BW, Sirovich L (2000) On the simulation of large populations of neurons. J Comput Neurosci 8: 51–63

    Article  CAS  PubMed  Google Scholar 

  • Principe J, Tavares V, Harris J, Freeman W (2001) Design and implementation of a biologically realistic olfactory cortex in analog VLSI. Proc IEEE 89: 569–571

    Article  Google Scholar 

  • Quyen MLV, Martinerie J, Adam C, Varela FJ (1997) Unstable periodic orbits in human epileptic activity. Phys Rev E 56: 3401–3411

    Article  Google Scholar 

  • Ranck JB Jr (1963) Specific impedance of rabbit cerebral cortex. Exp Neurol 7: 144–152

    Article  PubMed  Google Scholar 

  • Rodrigues S, Terry JR, Breakspear M (2005) On the gensis of spike-wave activity in a mean-field model of human thalamic and cortico-thalamic dynamics. Phys Lett A 355: 352–357

    Article  Google Scholar 

  • Rodrigues S, Barton D, Szalai R, Benjamin O, Richardson MP, Terry JR (2009) Transitions to spike-wave oscillations and epileptic dynamics in a human cortico-thalamic mean-field model. J Comput Neurosci 27: 507–526

    Article  PubMed  Google Scholar 

  • Rozonoér LI (1969) Random logical nets I, II and III. Autom Remote Control 5: 773–781 (Translation of Avtomatika i Telemekhanika)

    Google Scholar 

  • Rudolph M, Pelletier JG, Paré D, Destexhe A (2005) Characterization of synaptic conductances and integrative properties during electrically induced EEG-activated states in neocortical neurons in vivo. J Neurophysiol 94: 2805–2821

    Article  PubMed  Google Scholar 

  • Shriki O, Hansel D, Sompolinsky H (2003) Rate models for conductance-based cortical neuronal networks. Neural Comput 15: 1809–1841

    Article  PubMed  Google Scholar 

  • Stephan KE, Kasper L, Harrison LM, Daunizeau J, den Ouden HEM, Breakspear M, Friston KJ (2008) Nonlinear dynamic causal models for fMRI. NeuroImage doi:10.1016/j.neuroimage.2008.04.262

  • Suffczynki P, Kalitzin S, da Silva FHL (2004) Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience 126: 464–484

    Google Scholar 

  • Wendling F, Bartolomei F, Bellanger JJ, Chauvel P (2002) Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. Eur J Neurosci 15: 1499–1508

    Article  CAS  PubMed  Google Scholar 

  • Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12: 1–24

    Article  CAS  PubMed  Google Scholar 

  • Wright JJ, Liley DTJ (1996) Dynamics of the brain at global and microscopic scales: neural networks and the eeg. Behav Brain Sci 19: 285–309

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Terry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, S., Chizhov, A.V., Marten, F. et al. Mappings between a macroscopic neural-mass model and a reduced conductance-based model. Biol Cybern 102, 361–371 (2010). https://doi.org/10.1007/s00422-010-0372-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-010-0372-z

Keywords

Navigation