Skip to main content

Advertisement

Log in

Concurrent adaptation of force and impedance in the redundant muscle system

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

This article examines the validity of a model to explain how humans learn to perform movements in environments with novel dynamics, including unstable dynamics typical of tool use. In this model, a simple rule specifies how the activation of each muscle is adapted from one movement to the next. Simulations of multijoint arm movements with a neuromuscular plant that incorporates neural delays, reflexes, and signal-dependent noise, demonstrate that the controller is able to compensate for changing internal or environment dynamics and noise properties. The computational model adapts by learning both the appropriate forces and required limb impedance to compensate precisely for forces and instabilities in arbitrary directions with patterns similar to those observed in motor learning experiments. It learns to regulate reciprocal activation and co-activation in a redundant muscle system during repeated movements without requiring any explicit transformation from hand to muscle space. Independent error-driven change in the activation of each muscle results in a coordinated control of the redundant muscle system and in a behavior that reduces instability, systematic error, and energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bien Z, Xu JX (1998) Iterative learning control: analysis, design, integration and applications. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Burdet E, Milner TE (1998) Quantization of human motions and learning of accurate movements. Biol Cybern 78: 307–318

    Article  CAS  PubMed  Google Scholar 

  • Burdet E, Codourey A, Rey L (1998) Experimental evaluation of nonlinear adaptive controllers. IEEE Control Syst Mag 18: 39–47

    Article  Google Scholar 

  • Burdet E, Osu R, Franklin DW, Milner TE, Kawato M (2001) The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414: 446–449

    Article  CAS  PubMed  Google Scholar 

  • Burdet E, Tee KP, Mareels I, Milner TE, Chew CM, Franklin DW, Osu R, Kawato M (2006) Stability and motor adaptation in human arm movements. Biol Cybern 94: 20–32

    Article  CAS  PubMed  Google Scholar 

  • Carter RR, Crago PE, Keith MW (1990) Stiffness regulation by reflex action in the normal human hand. J Neurophysiol 64: 105–118

    CAS  PubMed  Google Scholar 

  • De Waal FBM (1999) Cultural primatology comes of age. Nature 399: 635–636

    Article  CAS  PubMed  Google Scholar 

  • Donchin O, Francis JT, Shadmehr R (2003) Quantifying generalization from trial-by-trial behavior of adaptive systems that learn with basis functions: theory and experiments in human motor control. J Neurosci 23: 9032–9045

    CAS  PubMed  Google Scholar 

  • Emken JL, Benitez R, Sideris A, Bobrow JE, Reinkensmeyer DJ (2007) Motor adaptation as a greedy optimization of error and effort. J Neurophysiol 97: 3997–4006

    Article  PubMed  Google Scholar 

  • Franklin DW, Burdet E, Osu R, Kawato M, Milner TE (2003a) Functional significance of stiffness in adaptation of multijoint arm movements to stable and unstable dynamics. Exp Brain Res 151: 145–157

    Article  PubMed  Google Scholar 

  • Franklin DW, Osu R, Burdet E, Kawato M, Milner TE (2003b) Adaptation to stable and unstable dynamics achieved by combined impedance control and inverse dynamics model. J Neurophysiol 90: 3270–3282

    Article  PubMed  Google Scholar 

  • Franklin DW, So U, Kawato M, Milner TE (2004) Impedance control balances stability with metabolically costly muscle activation. J Neurophysiol 92: 3097–3105

    Article  PubMed  Google Scholar 

  • Franklin DW, Liaw G, Milner TE, Osu R, Burdet E, Kawato M (2007a) Endpoint stiffness of the arm is directionally tuned to instability in the environment. J Neurosci 27: 7705–7716

    Article  CAS  PubMed  Google Scholar 

  • Franklin DW, So U, Burdet E, Kawato M (2007) Visual feedback is not necessary for the learning of novel dynamics. PLoS ONE 2(12): e1336. doi:10.1371/journal.pone.0001336

    Article  PubMed  Google Scholar 

  • Franklin DW, Burdet E, Tee KP, Osu R, Milner TE, Chee CM, Kawato M (2008) CNS learns stable, accurate, and efficient movements using a simple algorithm. J Neurosci 28(44): 11165–11173

    Article  CAS  PubMed  Google Scholar 

  • Gomi H, Osu R (1998) Task-dependent viscoelasticity of human multijoint arm and its spatial characteristics for interaction with environments. J Neurosci 18(21): 8965–8978

    CAS  PubMed  Google Scholar 

  • Gribble PL, Ostry DJ (2000) Compensation for loads during arm movements using equilibriumpoint control. Exp Brain Res 135: 474–482

    Article  CAS  PubMed  Google Scholar 

  • Guigon E, Baraduc P, Desmurget M (2007) Computational motor control: redundancy and invariance. J Neurophysiol 97: 331–347

    Article  PubMed  Google Scholar 

  • Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor planning. Nature 394: 780–784

    Article  CAS  PubMed  Google Scholar 

  • Hunter IW, Kearney RE (1982) Dynamics of human ankle stiffness: variation with mean ankle torque. J Biomech 15: 747–752

    Article  CAS  PubMed  Google Scholar 

  • Izawa J, Rane T, Donchin O, Shadmehr R (2008) Motor adaptation as a process of reoptimization. J Neurosci 28: 2883–2891

    Article  CAS  PubMed  Google Scholar 

  • Katayama M, Kawato M (1993) Virtual trajectory and stiffness ellipse during multijoint arm movement predicted by neural inverse models. Biol Cybern 69: 353–362

    CAS  PubMed  Google Scholar 

  • Kawato M, Furukawa K, Suzuki R (1987) A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern 57: 169–185

    Article  CAS  PubMed  Google Scholar 

  • Kirsch RF, Boskov D, Rymer WZ (1994) Muscle stiffness during transient and continuous movements of cat muscle: perturbation characteristics and physiological relevance. IEEE Trans Biomed Eng 41: 758–770

    Article  CAS  PubMed  Google Scholar 

  • Kuechle DK, Newman SR, Itoi E, Morrey BF, An KN (1997) Shoulder muscle moment arms during horizontal flexion and elevation. J Should Elb Surg 6(5): 429–439

    Article  CAS  Google Scholar 

  • Melendez-Calderon A, Masia L, Casadio M, Burdet E (2009) Force field compensation can be learned without proprioceptive error. In: Proceedings of the medical physics and biomedical engineering world congress

  • Milner TE, Franklin DW (2005) Impedance control and internal model use during the initial stage of adaptation to novel dynamics in humans. J Physiol 567(2): 651–664

    Article  CAS  PubMed  Google Scholar 

  • Murray WM, Delp SL, Buchanan TS (1995) Variation of muscle moment arms with elbow and forearm position. J Biomech 28(5): 513–525

    Article  CAS  PubMed  Google Scholar 

  • Newell KM, Vaillancourt DE, Sosnoff JJ (2006) Aging, complexity, and motor performance. In: Birren JE, Schaie KW, Abeles RP, Gatz M, Salthouse TA (eds) Handbook of the psychology of aging. Academic Press, San Diego

    Google Scholar 

  • Nijhof EJ, Kouwenhoven E (2000) Simulation of multi-joint arm movements. In: Winters JM, Crago PE (eds) Biomechanics and neural control of posture and movement. Springer-Verlag, Berlin, pp 363–372

    Google Scholar 

  • Osu R, Burdet E, Franklin DW, Milner TE, Kawato M (2003) Different mechanisms involved in adaptation to stable and unstable dynamics. J Neurophysiol 90: 3255–3269

    Article  PubMed  Google Scholar 

  • Osu R, Kamimura N, Iwasaki H, Nakano E, Harris CM, Wada Y, Kawato M (2004) Optimal impedance control for task achievement in the presence of signal-dependent noise. J Neurophysiol 92(2): 1199–1215

    Article  PubMed  Google Scholar 

  • Rack PMH (1981) Limitations of somatosensory feedback in control of posture and movement. In: Brooks VB (ed) Motor control. Handbook of physiology, Sect. 1. The nervous system. American Physiological Society, pp 229–256

  • Selen LPJ, Beek PJ, van Dieen JH (2005) Can co-activation reduce kinematic variability? A simulation study. Biol Cybern 93: 373–381

    Article  PubMed  Google Scholar 

  • Scheidt RA, Reinkensmeyer DJ, Conditt MA, Rymer WZ, Mussa-Ivaldi FA (2000) Persistence of motor adaptation during constrained, multi-joint, arm movements. J Neurophysiol 84: 853–862

    CAS  PubMed  Google Scholar 

  • Schweighofer N, Spoelstra J, Arbib MA, Kawato M (1998) Role of the cerebellum in reaching movements in humans. II. A neural model of the intermediate cerebellum. Eur J Neurosci 10: 95–105

    Article  CAS  PubMed  Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14: 3208–3224

    CAS  PubMed  Google Scholar 

  • Slifkin AB, Newell KM (1999) Noise, information transmission , and force variability. J Exp Psychol Hum Percept Perform 25(3): 837–851

    Article  CAS  PubMed  Google Scholar 

  • Slotine JJ, Li W (1991) Applied nonlinear control. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Smith MA, Ghazizadeh A, Shadmehr R (2006) Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol 4(6): e179. doi:10.1371/journal.pbio.0040179

    Article  PubMed  Google Scholar 

  • Stroeve S (1999) Impedance characteristics of a neuromusculoskeletal model of the human arm II. Movement control. Biol Cybern 81: 495–504

    Article  CAS  PubMed  Google Scholar 

  • Sturman MM, Vaillancourt DE, Corcos DM (2005) Effects of aging on the regularity of physiological tremor. J Neurophysiol 93: 3064–3074

    Article  PubMed  Google Scholar 

  • Tee KP (2003) A unified model of human motor adaptation to stable and unstable dynamics. MSc thesis, National University of Singapore

  • Tee KP, Burdet E, Chew CM, Milner TE (2004) A model of endpoint force and impedance in human arm movements. Biol Cybern 90: 368–375

    Article  CAS  PubMed  Google Scholar 

  • Thoroughman KA, Shadmehr R (2000) Learning of action through adaptive combination of motor primitives. Nature 407: 742–747

    Article  CAS  PubMed  Google Scholar 

  • Thoroughman KA, Taylor JA (2005) Rapid reshaping of human motor generalization. J Neurosci 25(39): 8948–8953

    Article  CAS  PubMed  Google Scholar 

  • Todorov E, Jordan M (1998) Smoothness maximization along a predefined path accurately predicts the speed profiles of complex arm movements. J Neurophysiol 80(2): 696–714

    CAS  PubMed  Google Scholar 

  • Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5: 1226–1235

    Article  CAS  PubMed  Google Scholar 

  • Trainin E, Meir R, Karniel A (2007) Explaining patterns of neural activity in the primary motor cortex using spinal cord and limb biomechanics models. J Neurophysiol 97: 3736–3750

    Article  PubMed  Google Scholar 

  • Weir AAS, Chappell J, Kacelnik A (2002) Shaping of hooks in New Caledonian crows. Science 297: 981

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Burdet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tee, K.P., Franklin, D.W., Kawato, M. et al. Concurrent adaptation of force and impedance in the redundant muscle system. Biol Cybern 102, 31–44 (2010). https://doi.org/10.1007/s00422-009-0348-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-009-0348-z

Keywords

Navigation