Skip to main content
Log in

A Biophysical Basis for the Inter-spike Interaction of Spike-timing-dependent Plasticity

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Although spike-timing-dependent plasticity (STDP) is well characterized when pre- and postsynaptic spikes are paired with a given time lag, how this generalizes for more complex spike-trains is unclear. Recent experiments demonstrate that contributions to synaptic plasticity from different spike pairs within a spike train do not add linearly. In the visual cortex conditioning with spike triplets shows that the effect of the first spike pair dominates over the second. Using a previously proposed calcium-dependent plasticity model, we show that short-term synaptic dynamics and interaction between successive back-propagating action potentials (BPAP) may jointly account for the nonlinearities observed. Paired-pulse depression and attenuation of BPAPs are incorporated into the model through the use-dependent depletion of pre- and postsynaptic resources, respectively. Simulations suggest that these processes may play critical roles in determining how STDP operates in the context of natural spike-trains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abarbanel HD, Gibb L, Huerta R, Rabinovich MI (2003) Biophysical model of synaptic plasticity dynamics. Biol Cybern 89:214–226

    Article  PubMed  Google Scholar 

  • Abbott LF, Varela JA, Sen K, Nelson SB (1997) Synaptic depression and cortical gain control. Science 275:220–224

    Article  PubMed  CAS  Google Scholar 

  • Artola A, Singer W (1993) Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci 16:480–487

    Article  PubMed  CAS  Google Scholar 

  • Artun OB, Shouval HZ, Cooper LN (1998) The effect of dynamic synapses on spatiotemporal receptive fields in visual cortex. Proc Natl Acad Sci USA 95:11999–12003

    Article  PubMed  CAS  Google Scholar 

  • Bear MF, Malenka RC (1994) Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 4:389–399

    Article  PubMed  CAS  Google Scholar 

  • Bear MF, Cooper LN, Ebner FF (1987) A physiological basis for a theory of synapse modification. Science 237:42–48

    Article  PubMed  CAS  Google Scholar 

  • Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472

    PubMed  CAS  Google Scholar 

  • Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356

    PubMed  CAS  Google Scholar 

  • Cho K, Aggleton JP, Brown MW, Bashir ZI (2001) An experimental test of the role of postsynaptic calcium levels in determining synaptic strength using perirhinal cortex of rat. J Physiol 532:459–466

    Article  PubMed  CAS  Google Scholar 

  • Colbert CM, Magee JC, Hoffman DA, Johnston D (1997) Slow recovery from inactivation of Na+ channels underlies the activity-dependent attenuation of dendritic action potentials in hippocampal CA1 pyramidal neurons. J Neurosci 17:6512–6521

    PubMed  CAS  Google Scholar 

  • Cormier RJ, Greenwood AC, Connor JA (2001) Bidirectional synaptic plasticity correlated with the magnitude of dendritic calcium transients above a threshold. J Neurophysiol 85:399–406

    PubMed  CAS  Google Scholar 

  • Cummings JA, Mulkey RM, Nicoll RA, Malenka RC (1996) Ca2+ signaling requirements for long-term depression in the hippocampus. Neuron 16:825–833

    Article  PubMed  CAS  Google Scholar 

  • Debanne D, Gahwiler BH, Thompson SM (1994) Asynchronous pre- and postsynaptic activity induces associative long-term depression in area CA1 of the rat hippocampus in vitro. Proc Natl Acad Sci USA 91:1148–1152

    Article  PubMed  CAS  Google Scholar 

  • Emptage N, Bliss TV, Fine A (1999) Single synaptic events evoke NMDA receptor-mediated release of calcium from internal stores in hippocampal dendritic spines. Neuron 22:115–124

    Article  PubMed  CAS  Google Scholar 

  • Feldman DE, Nicoll RA, Malenka RC (1999) Synaptic plasticity at thalamocortical synapses in developing rat somatosensory cortex: LTP, LTD, and silent synapses. J Neurobiol 41:92–101

    Article  PubMed  CAS  Google Scholar 

  • Froemke RC, Dan Y (2002) Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416:433–438

    Article  PubMed  CAS  Google Scholar 

  • Izhikevich EM, Desai NS (2003) Relating STDP to BCM. Neural Comput 15:1511–1523

    Article  PubMed  Google Scholar 

  • Jahr CE, Stevens CF (1990) Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J Neurosci 10:3178–3182

    PubMed  CAS  Google Scholar 

  • Karmarkar UR, Buonomano DV (2002) A model of spike-timing dependent plasticity: one or two coincidence detectors? J Neurophysiol 88:507–513

    PubMed  Google Scholar 

  • Kempter R, Gerstner W, van Hemmen JL (1999) Hebbian learning and spiking neurons. Phys Rev E 59:4498–4514

    Article  CAS  Google Scholar 

  • Larkum ME, Zhu JJ, Sakmann B (2001) Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. J Physiol 533:447–466

    Article  PubMed  CAS  Google Scholar 

  • Levy WB, Steward O (1983) Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience 8:791–797

    Article  PubMed  CAS  Google Scholar 

  • Lisman J (1989) A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc Natl Acad Sci U S A 86:9574–9578

    Article  PubMed  CAS  Google Scholar 

  • Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275:209–213

    Article  PubMed  CAS  Google Scholar 

  • Malenka RC, Nicoll RA (1999) Long-term potentiation–a decade of progress? Science 285:1870–1874

    Article  PubMed  CAS  Google Scholar 

  • Markram H, Tsodyks M (1996) Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature 382:807–810

    Article  PubMed  CAS  Google Scholar 

  • Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama M, Hong K, Mikoshiba K, Poo MM, Kato K (2000) Calcium stores regulate the polarity and input specificity of synaptic modification. Nature 408:584–588

    Article  PubMed  CAS  Google Scholar 

  • Philpot BD, Sekhar AK, Shouval HZ, Bear MF (2001) Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex. Neuron 29: 157–169

    Article  PubMed  CAS  Google Scholar 

  • Rubin JE, Gerkin RC, Bi GQ, Chow CC (2004) Calcium time course as a signal for spike-timing dependent plasticity. J Neurophysiol 93:2600–2613

    Article  PubMed  Google Scholar 

  • Sabatini BL, Oertner TG, Svoboda K (2002) The life cycle of 2+ ions in dendritic spines. Neuron 33:439–452

    Article  PubMed  CAS  Google Scholar 

  • Senn W (2002) Beyond spike timing: the role of nonlinear plasticity and unreliable synapses. Biol Cybern 87:344–355

    Article  PubMed  Google Scholar 

  • Shouval HZ, Kalantzis G (2005) Stochastic properties of synaptic transmission affect the shape of spike time dependent plasticity curves. J Neurophysiol 93:1069–1073

    Article  PubMed  Google Scholar 

  • Shouval HZ, Bear MF, Cooper LN (2002a) A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc Natl Acad Sci USA 99:10831–10836

    Article  PubMed  CAS  Google Scholar 

  • Shouval HZ, Blais BS, Yeung LC, Castellani GC, Cooper LN (2002b) Converging evidence for a simplified biophysical model of synaptic plasticity. Biol Cyber 87:383–391

    Article  Google Scholar 

  • Sjostrom PJ, Turrigiano GG, Nelson SB (2001) Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32:1149–1164

    Article  PubMed  CAS  Google Scholar 

  • Sjostrom PJ, Turrigiano GG, Nelson SB (2003) Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron 39:641–654

    Article  PubMed  Google Scholar 

  • Song S, Abbott LF (2001) Cortical development and remapping through spike timing-dependent plasticity. Neuron 32:339–350

    Article  PubMed  CAS  Google Scholar 

  • Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci 3:919–926

    Article  PubMed  CAS  Google Scholar 

  • Spruston N, Schiller Y, Stuart G, Sakmann B (1995) Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268:297–300

    Article  PubMed  CAS  Google Scholar 

  • Stevens CF, Wang Y (1994) Changes in reliability of synaptic function as a mechanism for plasticity. Nature 371:704–707

    Article  PubMed  CAS  Google Scholar 

  • Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:69–72

    Article  PubMed  CAS  Google Scholar 

  • Tsodyks MV, Markram H (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci USA 94:719–723

    Article  PubMed  CAS  Google Scholar 

  • van Rossum MC, Bi GQ, Turrigiano GG (2000) Stable Hebbian learning from spike timing-dependent plasticity. J Neurosci 20:8812–8821

    PubMed  Google Scholar 

  • Wang HX, Gerkin RC, Nauen DW, Bi GQ (2005) Coactivation and timing-dependent integration of synaptic potentiation and depression. Nat Neurosci 8:187–193

    Article  PubMed  CAS  Google Scholar 

  • Yang SN, Tang YG, Zucker RS (1999) Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. J Neurophysiol 81:781–787

    PubMed  CAS  Google Scholar 

  • Yeung LC, Blais BS, Shouval HZ, Cooper LN (2004) Homeostasis and pattern formation under a NMDAR-mediated, calcium-dependent synaptic plasticity model. PNAS 101:14943–14948

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harel Z. Shouval.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, N.T., Yeung, L.C., Cooper, L.N. et al. A Biophysical Basis for the Inter-spike Interaction of Spike-timing-dependent Plasticity. Biol Cybern 95, 113–121 (2006). https://doi.org/10.1007/s00422-006-0071-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0071-y

Keywords

Navigation