Skip to main content
Log in

Sodium bicarbonate supplementation improves hypertrophy-type resistance exercise performance

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The aim of the present study was to examine the effects of sodium bicarbonate (NaHCO3) administration on lower-body, hypertrophy-type resistance exercise (HRE). Using a double-blind randomized counterbalanced design, 12 resistance-trained male participants (mean ± SD; age = 20.3 ± 2 years, mass = 88.3 ± 13.2 kg, height = 1.80 ± 0.07 m) ingested 0.3 g kg−1 of NaHCO3 or placebo 60 min before initiation of an HRE regimen. The protocol employed multiple exercises: squat, leg press, and knee extension, utilizing four sets each, with 10–12 repetition-maximum loads and short rest periods between sets. Exercise performance was determined by total repetitions generated during each exercise, total accumulated repetitions, and a performance test involving a fifth set of knee extensions to failure. Arterialized capillary blood was collected via fingertip puncture at four time points and analyzed for pH, [HCO3 ], base excess (BE), and lactate [Lac]. NaHCO3 supplementation induced a significant alkaline state (pH: NaHCO3: 7.49 ± 0.02, placebo: 7.42 ± 0.02, P < 0.05; [HCO3 ]: NaHCO3: 31.50 ± 2.59, placebo: 25.38 ± 1.78 mEq L−1, P < 0.05; BE: NaHCO3: 7.92 ± 2.57, placebo: 1.08 ± 2.11 mEq L−1, P < 0.05). NaHCO3 administration resulted in significantly more total repetitions than placebo (NaHCO3: 139.8 ± 13.2, placebo: 134.4 ± 13.5), as well as significantly greater blood [Lac] after the exercise protocol (NaHCO3: 17.92 ± 2.08, placebo: 15.55 ± 2.50 mM, P < 0.05). These findings demonstrate ergogenic efficacy for NaHCO3 during HRE and warrant further investigation into chronic training applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ACSM (2009) Position stand: progression models in resistance training for healthy adults. Med Sci Sports Exerc 41(3):687–708

    Article  Google Scholar 

  • Allen DG, Westerblad H, Lannergren J (1995) The role of intracellular acidosis in muscle fatigue. In: Gandevia SC, Enoka RM, McComas AJ, Stuart DG, Thomas CK (eds) Advances in experimental medicine and biology. Plenum Press, New York, pp 57–68

    Google Scholar 

  • Artioli GG, Gualano B, Coelho DF, Benatti FB, Gailey AW, Lancha AH Jr (2007) Does sodium-bicarbonate ingestion improve simulated Judo performance? Int J Sport Nutr Exerc Metab 17(2):206–217

    PubMed  CAS  Google Scholar 

  • Bird SP, Tarpenning KM, Marino FE (2005) Designing resistance training programmes to enhance muscular fitness: a review of the acute programme variables. Sport Med 35(10):841–851

    Article  Google Scholar 

  • Chin ER, Allen DG (1998) The contribution of pH-dependent mechanisms to fatigue at different intensities in mammalian single muscle fibres. J Physiol 512(3):831–840

    Article  PubMed  CAS  Google Scholar 

  • Coombes J, McNaughton LR (1993) Effects of bicarbonate ingestion on leg strength and power during isokinetic knee flexion and extension. J Strength Cond Res 7(4):241–249

    Google Scholar 

  • Costill DL, Verstappen F, Kuipers H, Janssen E, Fink W (1984) Acid–base balance during repeated bouts of exercise: influence of HCO3. Int J Sports Med 5(5):228–231

    Article  PubMed  CAS  Google Scholar 

  • Dascombe BJ, Reaburn PR, Sirotic AC, Coutts AJ (2007) The reliability of the i-STAT clinical portable analyser. J Sci Med Sport 10(3):135–140

    Article  PubMed  CAS  Google Scholar 

  • de Salles BF, Simao R, Miranda F, Novaes Jda S, Lemos A, Willardson JM (2009) Rest interval between sets in strength training. Sport Med 39(9):765–777

    Article  Google Scholar 

  • Douroudos I, Fatouros IG, Gourgoulis V, Jamurtas AZ, Tsitsios T, Hatzinikolaou A et al (2006) Dose-related effects of prolonged NaHCO3 ingestion during high-intensity exercise. Med Sci Sports Exerc 38(10):1746–1753

    Article  PubMed  CAS  Google Scholar 

  • Edge J, Bishop D, Goodman C (2006) Effects of chronic NaHCO3 ingestion during interval training on changes to muscle buffer capacity, metabolism, and short-term endurance performance. J Appl Physiol 101(3):918–925

    Article  PubMed  CAS  Google Scholar 

  • Elias AN, Wilson AF, Naqvi S, Pandian MR (1997) Effects of blood pH and blood lactate on growth hormone, prolactin, and gonadotropin release after acute exercise in male volunteers. Proc Soc Exp Biol Med 214(2):156–160

    PubMed  CAS  Google Scholar 

  • Epley B (1985) Poundage chart. In: Boyd Epley Workout. Body Enterprises, Lincoln, NE

  • Fitts RH (1994) Cellular mechanisms of muscle fatigue. Physiol Rev 74(1):49–94

    Article  PubMed  CAS  Google Scholar 

  • Fleck SJ, Kraemer WJ (1988) Resistance training: basic principles (part 1 of 4). Physician Sports Med 16:160–171

    Google Scholar 

  • Fry AC (2004) The role of resistance exercise intensity on muscle fibre adaptations. Sports Med 34(10):663–679

    Article  PubMed  Google Scholar 

  • Gao J, Costill DL, Horswill CA, Park SH (1988) Sodium bicarbonate ingestion improves performance in interval swimming. Eur J Appl Physiol 58(1/2):171–174

    Article  CAS  Google Scholar 

  • Godfrey RJ, Madgwick Z, Whyte GP (2003) The exercise-induced growth hormone response in athletes. Sports Med 33(8):599–613

    Article  PubMed  Google Scholar 

  • Gordon SE, Kraemer WJ, Vos NH, Lynch JM, Knuttger HG (1994) Effect of acid–base balance on the growth hormone response to acute high-intensity cycle exercise. J Appl Physiol 76(2):821–829

    PubMed  CAS  Google Scholar 

  • Gotshalk LA, Loebel C, Nindl BC et al (1997) Hormonal responses of multi-set versus single set heavy resistance exercise protocols. Can J Appl Physiol 22:244–255

    Article  PubMed  CAS  Google Scholar 

  • Hollidge-Horvat MG, Parolin ML, Wong D, Jones NL, Heigenhauser GJ (2000) Effect of induced metabolic alkalosis on human skeletal muscle metabolism during exercise. Am J Physiol Endocrinol Metab 41(2):E316–E329

    Google Scholar 

  • Kraemer RR, Kilgore JL, Kraemer GR, Castracane VD (1992) Growth hormone, IGF-I, and testosterone responses to resistive exercise. Med Sci Sports Exerc 24(12):1346–1352

    PubMed  CAS  Google Scholar 

  • Kraemer WJ, Harman FS, Vos NH et al (2000) Effects of exercise and alkalosis on serum insulin-like growth factor I and IGF-binding protein-3. Can J Appl Physiol 25(2):127–137

    Article  PubMed  CAS  Google Scholar 

  • Lambert CP, Flynn MG (2002) Fatigue during high-intensity intermittent exercise: application to bodybuilding. Sports Med 32(8):511–522

    Article  PubMed  Google Scholar 

  • Linnamo V, Pakarinen A, Komi PV, Kraemer WJ, Häkkinen K (2005) Acute hormonal responses to submaximal and maximal heavy resistance and explosive exercises in men and women. J Strength Cond Res 19(3):566–571

    Google Scholar 

  • Matson LG, Tran ZV (1993) Effects of sodium bicarbonate ingestion on anaerobic performance: a meta-analytic review. Int J Sport Nutr 3(1):2–28

    PubMed  CAS  Google Scholar 

  • Maughan RJ, Leiper JB, Litchfield PE (1986) The effects of induced acidosis and alkalosis on isometric endurance capacity in man. In: Dotson CO, Humphrey JH (eds) Exercise physiology: current selected research, vol 2. AMS Press, New York, pp 73–82

    Google Scholar 

  • McKenzie DC, Coutts KD, Stirling DR, Hoeben HH, Kuzara G (1986) Maximal work production following two levels of artificially induced metabolic alkalosis. J Sport Sci 4(1):35–38

    Article  CAS  Google Scholar 

  • McNaughton L, Siegler J, Midgley A (2008) Ergogenic effects of sodium bicarbonate. Curr Sports Med Rep 7(4):230–236

    PubMed  Google Scholar 

  • Medbo JI, Tabata I (1993) Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling. J Appl Physiol 75(4):1654–1660

    PubMed  CAS  Google Scholar 

  • Messonnier L, Kristensen M, Juel C, Denis C (2007) Importance of pH regulation and lactate/H+ transport capacity for work production during supramaximal exercise in humans. J Appl Physiol 102(5):1936–1944

    Article  PubMed  CAS  Google Scholar 

  • Portington KJ, Pascoe DD, Webster MJ, Anderson LH, Rutland RR, Gladden LB (1998) Effect of induced alkalosis on exhaustive leg press performance. Med Sci Sports Exerc 30(4):523–528

    Article  PubMed  CAS  Google Scholar 

  • Raymer GH, Marsh GD, Kowalchuk JM, Terry TR (2004) Metabolic effects of induced alkalosis during progressive forearm exercise to fatigue. J Appl Physiol 96(6):2050–2056

    Article  PubMed  CAS  Google Scholar 

  • Rico H, Paez E, Aznar L, Hernandez ER, Seco S, Villa LF (2001) Effects of sodium bicarbonate supplementation on axial and peripheral bone mass in rats on strenuous treadmill training exercise. J Bone Miner Metab 19:97–101

    Article  PubMed  CAS  Google Scholar 

  • Siegler JC, Hirscher K (2010) Sodium bicarbonate ingestion and boxing performance. J Strength Cond Res 24(1):103–108

    Article  PubMed  Google Scholar 

  • Siegler JC, Midgley AW, Polman RC, Lever R (2010) Effects of various sodium bicarbonate loading protocols on the time-dependent extracellular buffering profile. J Strength Cond Res 24(9):2551–2557

    Article  PubMed  Google Scholar 

  • Smilios I, Pilianidis T, Karamouzis M, Tokmakidis SP (2003) Hormonal responses after various resistance exercise protocols. Med Sci Sports Exerc 35(4):644–654

    Article  PubMed  CAS  Google Scholar 

  • Stephens TJ, McKenna MJ, Canny BJ, Snow RJ, McConell GK (2002) Effect of sodium bicarbonate on muscle metabolism during intense endurance cycling. Med Sci Sports Exerc 34(4):614–621

    Article  PubMed  CAS  Google Scholar 

  • Sutton JR, Jones NL, Toews CJ (1976) Growth hormone secretion in acid–base alterations at rest and during exercise. Clin Sci 50(4):241–247

    CAS  Google Scholar 

  • Sutton JR, Jones NL, Toews CJ (1981) Effect of pH on muscle glycolysis during exercise. Clin Sci 61(3):331–338

    PubMed  CAS  Google Scholar 

  • Tarpenning KM, Wiswell RA, Hawkins SA, Marcell TJ (2001) Influence of weight training exercise and modification of hormonal response on skeletal muscle growth. J Sci Med Sport 4(4):431–446

    Article  PubMed  CAS  Google Scholar 

  • Trivedi B, Danforth WH (1966) Effects of pH on the kinetics of frog muscle phosphofructokinase. J Biol Chem 241:4110–4114

    PubMed  CAS  Google Scholar 

  • Verbitsky O, Mizrahi J, Levin M, Isakov E (1997) Effect of ingested sodium bicarbonate on muscle force, fatigue, and recovery. J Appl Physiol 83(2):333–337

    PubMed  CAS  Google Scholar 

  • Wahl P, Zinner C, Achtzehn S, Bloch W, Mester J (2010) Effect of high- and low-intensity exercise and metabolic acidosis on levels of GH, IGF-I, IGFBP-3 and cortisol. Growth Horm IGF Res 20(5):380–385

    Article  PubMed  CAS  Google Scholar 

  • Webster MJ, Webster MN, Crawford RE, Gladden LB (1993) Effect of sodium bicarbonate ingestion on exhaustive resistance exercise performance. Med Sci Sport Exerc 25(8):960–965

    Article  CAS  Google Scholar 

  • Zajac A, Cholewa J, Poprzecki S, Waskiewicz Z, Langfort J (2009) Effects of sodium bicarbonate ingestion on swim performance in youth athletes. J Sports Sci Med 8(1):45–50

    Google Scholar 

  • Zavorsky GS, Lands LC, Schneider W, Carli F (2005) Comparison of fingertip to arterial blood samples at rest and during exercise. Clin J Sport Med 15(4):263–270

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funding was not received for this work from the National Institutions of Health, Wellcome Trust, Howard Hughes Medical Institute, or others. The authors declare no conflict of interest. The results of the present study do not constitute endorsement by Springer. Benjamin Carr, Michael Webster, Joseph Boyd, Geoffrey Hudson, and Timothy Scheett declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin M. Carr.

Additional information

Communicated by William J. Kraemer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carr, B.M., Webster, M.J., Boyd, J.C. et al. Sodium bicarbonate supplementation improves hypertrophy-type resistance exercise performance. Eur J Appl Physiol 113, 743–752 (2013). https://doi.org/10.1007/s00421-012-2484-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-012-2484-8

Keywords

Navigation