Skip to main content
Log in

Response sensitivity analysis of laminated composite shells based on higher-order shear deformation theory

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Laminated composite shells are widely used as structural components in important aerospace, marine, automobile engineering structures. Thus, appropriate evaluation of sensitivities of responses like deflection, frequency, buckling etc. due to changes in design variables is of great importance for efficient and safe design of such structures. The present paper deals with a comprehensive sensitivity analysis of laminated composite shells using \({C}^{0 }\) finite element with more accurate theoretical model based on higher-order shear deformation theory (HSDT). The sensitivity analysis of deflection and natural frequency with respect to important design parameters such as material parameters, angle of fiber orientation, radius of curvature, density of materials and external load is presented. Furthermore, sensitivity-based importance factor for each parameter is obtained so that the most important parameters affecting the shell responses can be readily identified. The response sensitivities obtained by the proposed formulation are compared with those obtained by the finite difference procedure. An extensive parametric study has been carried out considering different variables to understand the performance of laminated shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Qatu, M.S., Sullivan, R.W., Wang, W.: Recent research advances on the dynamic analysis of composite shells: 2000–2009. Compos. Struct. 93, 14–31 (2010)

    Article  Google Scholar 

  2. Kapanla, R.K.: A review on the analysis of laminated shells. J. Press. Vessel Technol. 111(2), 88–96 (1989)

    Article  Google Scholar 

  3. Mateus, H.C., Soares, C.M.M., Soares, C.A.M.: Sensitivity analysis and optimal design of thin laminated composite structures. Comput. Struct. 41(3), 501–508 (1991)

    Article  MATH  Google Scholar 

  4. Chen, S., Guan, P., Shen, B.: Sensitivity analysis of eigenproblems for symmetrically laminated composite plates. Comput. Struct. 59(3), 431–435 (1996)

    Article  MATH  Google Scholar 

  5. Fish, J., Ghouali, A.: Multiscale analytical analysis sensitivity analysis for composite materials. Int. J. Numer. Methods Eng. 50(6), 1501–1520 (2001)

    Article  MATH  Google Scholar 

  6. Liu, Q.: Analytical sensitivity analysis of frequencies and modes for composite laminated structure. Int. J. Mech. Sci. 90, 258–277 (2015)

    Article  Google Scholar 

  7. Soares, C.M.M., Cordeiro, N.M.M., Barbosa, J.I.: A discrete model for the design sensitivity analysis of multi-layered composite shells of revolution. Compos. Eng. 5(5), 533–550 (1995)

    Article  Google Scholar 

  8. Kulkarni, K., Noor, A.: Sensitivity analysis for the dynamic response of viscoplastic shells of revolution. Comput. Struct. 55(6), 955–969 (1995)

    Article  MATH  Google Scholar 

  9. Mateus, H.C., Rodrigues, H.C., Soares, C.M.M., Soares, C.A.M.: Sensitivity analysis and optimization of thin laminated structures with a nonsmooth eigenvalue based criterion. Struct. Optim. 14(4), 219–224 (1997)

    Article  Google Scholar 

  10. Moita, J.S., Barbosa, J.I., Soares, C.M.M., Soares, C.A.M.: Sensitivity analysis and optimal design of geometrically non-linear laminated plates and shells. Comput. Struct. 76(1–3), 407–420 (2000)

    Article  Google Scholar 

  11. Adali, S., Verijenko, V.E., Richter, A.: Minimum sensitivity design of laminated shells under axial load and external pressure. Compos. Struct. 54(2–3), 139–142 (2001)

    Article  Google Scholar 

  12. Kaminski, M.: Sensitivity analysis of homogenized characteristics for some elastic composites. Comput. Methods Appl. Mech. 192(16–18), 1973–2005 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Whitney, J.M., Sun, C.T.: A higher order theory for extensional motion of laminated composites. J. Sound Vib. 30(1), 85–97 (1973)

    Article  MATH  Google Scholar 

  14. Kant, T., Menon, M.P.: Higher-order theories for composite and sandwich cylindrical shells with \(\text{ C }^{0 }\) finite element. Comput. Struct. 33(5), 1191–1204 (1989)

    Article  MATH  Google Scholar 

  15. Mantari, J.L., Oktem, A.S., Soares, C.G.: Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory. Compos. Struct. 94(1), 37–49 (2011)

    Article  Google Scholar 

  16. Thakur, S.N., Ray, C.: An accurate \(\text{ C }^{0}\) finite element model of moderately thick and deep laminated doubly curved shell considering cross sectional warping. Thin Wall Struct. 94, 384–393 (2015)

    Article  Google Scholar 

  17. Thakur, S.N., Ray, C.: The effect of thickness coordinate to radius ratio on free vibration of moderately thick and deep doubly curved cross-ply laminated shell. Arch. Appl. Mech. 86(6), 1119–1132 (2015)

    Article  Google Scholar 

  18. Thakur, S.N., Ray, C., Chakraborty, S.: A new efficient higher-order shear deformation theory for a doubly curved laminated composite shell. Acta Mech. 228(1), 69–87 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mukhopadhyay, M.: Mechanics of Composite Materials and Structures. University Press Private Limited, Hyderabad (2004)

    Google Scholar 

  20. Gupta, S., Manohar, C.S.: An improved response surface method for the determination of failure probability and importance measures. Struct. Saf. 26(2), 123–139 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaitali Ray.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Rigidity matrix of laminates:

$$\begin{aligned} \left\{ {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {{N_s}}\\ {{N_r}}\\ {{N_{sr}}}\\ {{N_{rs}}} \end{array}}\\ {\begin{array}{*{20}{c}} {{M_s}}\\ {{M_r}}\\ {{M_{sr}}}\\ {{M_{rs}}} \end{array}} \end{array}}\\ {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {N_s^*}\\ {N_r^*}\\ {N_{sr}^*}\\ {N_{rs}^*} \end{array}}\\ {\begin{array}{*{20}{c}} {M_s^*}\\ {M_r^*}\\ {M_{sr}^*} \end{array}} \end{array}}\\ {M_{rs}^*} \end{array}} \right\} = \left[ {\begin{array}{*{20}{c}} {\overline{A_{11}}}&{}{A}_{12}&{}{\overline{A_{16}}}&{}A_{16}&{}{\overline{B_{11}}}&{}B_{12}&{}{\overline{B_{16}}}&{}B_{16}&{}{\overline{C_{11}}}&{}C_{12}&{}C_{16}&{}{\overline{C_{16}}}&{}{\overline{D_{11}}}&{}D_{12}&{}{\overline{D_{16}}}&{}D_{16}\\ A_{12}&{}{\widetilde{A_{22}}}&{}A_{26}&{}{\widetilde{A_{26}}}&{}{B}_{12}&{}{\widetilde{B_{22}}}&{}B_{26}&{}{\widetilde{B_{26}}}&{}{C}_{12}&{}{\widetilde{C_{22}}}&{}{C}_{26}&{}{\widetilde{C_{26}}}&{}D_{12}&{}{\widetilde{D_{22}}}&{}D_{26}&{}{\widetilde{D_{26}}}\\ {\overline{A_{16}}}&{}A_{{26}}&{}{\overline{A_{66}}}&{}A_{66}&{}{\overline{B_{16}}}&{}{B}_{26}&{}{\overline{B_{66}}}&{}{B}_{66}&{}{\overline{C_{16}}}&{}{C}_{26}&{}{\overline{C_{66}}}&{}{C}_{66}&{}{\overline{D_{16}}}&{}{D}_{26}&{}{\overline{D_{66}}}&{}{D}_{66}\\ A_{16}&{}{\widetilde{A_{26}}}&{}A_{66}&{}{\widetilde{A_{66}}}&{}{B}_{16}&{}{\widetilde{B_{26}}}&{}{B}_{66}&{}{\widetilde{B_{66}}}&{}{C}_{16}&{}{\widetilde{C_{26}}}&{}{C}_{66}&{}{\widetilde{C_{66}}}&{}{D}_{16}&{}{\widetilde{D_{26}}}&{}{D}_{66}&{}{\widetilde{D_{66}}}\\ {\overline{B_{11}}}&{}{B}_{12}&{}{\overline{B_{16}}}&{}{B}_{16}&{}{\overline{C_{11}}}&{}{C}_{12}&{}C_{16}&{}{\overline{C_{16}}}&{}{\overline{D_{11}}}&{}{D}_{12}&{}{\overline{D_{16}}}&{}{D}_{16}&{}{\overline{E_{11}}}&{}{E}_{22}&{}{\overline{E_{16}}}&{}{E}_{16}\\ {\overline{B_{12}}}&{}{\widetilde{B_{22}}}&{}{B}_{26}&{}{\widetilde{B_{26}}}&{}{C}_{12}&{}{\widetilde{C_{22}}}&{}{C}_{26}&{}{\widetilde{C_{26}}}&{}{D}_{12}&{}{\widetilde{D_{22}}}&{}{D}_{26}&{}{\widetilde{D_{26}}}&{}{E}_{12}&{}{\widetilde{E_{22}}}&{}{E}_{26}&{}{\widetilde{E_{26}}}\\ {\overline{B_{16}}}&{}{B}_{26}&{}{\overline{B_{66}}}&{}B_{66}&{}{\overline{C_{16}}}&{}{C}_{26}&{}{\overline{C_{66}}}&{}{C}_{66}&{}{\overline{D_{16}}}&{}{D}_{26}&{}{\overline{D_{66}}}&{}D_{66}&{}{\overline{E_{16}}}&{}E_{26}&{}{\overline{E_{66}}}&{}E_{66}\\ {B}_{16}&{}{\widetilde{B_{26}}}&{}{B}_{66}&{}{\widetilde{B_{66}}}&{}{C}_{16}&{}{\widetilde{C_{26}}}&{}{C}_{66}&{}{\widetilde{C_{66}}}&{}D_{16}&{}{\widetilde{D_{26}}}&{}{D}_{66}&{}{\widetilde{D_{66}}}&{}E_{16}&{}{\widetilde{E_{26}}}&{}E_{66}&{}{\widetilde{E_{66}}}\\ {\overline{C_{11}}}&{}{C}_{12}&{}{\overline{C_{16}}}&{}{C}_{16}&{}{\overline{D_{11}}}&{}{D}_{12}&{}{\overline{D_{16}}}&{}D_{16}&{}{\overline{E_{11}}}&{}{E}_{22}&{}{\overline{E_{16}}}&{}E_{16}&{}{\overline{F_{11}}}&{}F_{12}&{}{\overline{F_{16}}}&{}{F}_{16}\\ {C}_{12}&{}{\widetilde{C_{22}}}&{}{C}_{26}&{}{\widetilde{C_{26}}}&{}D_{12}&{}{\widetilde{D_{22}}}&{}D_{26}&{}E_{12}&{}{\widetilde{E_{22}}}&{}E_{26}&{}{\widetilde{E_{26}}}&{}F_{12}&{}{\overline{F_{12}}}&{}{\widetilde{F_{22}}}&{}F_{26}&{}{\overline{F_{26}}}\\ {\overline{C_{16}}}&{}{C}_{26}&{}{\overline{C_{66}}}&{}C_{66}&{}{\overline{D_{16}}}&{}D_{26}&{}{\overline{D_{66}}}&{}D_{66}&{}{\overline{E_{16}}}&{}{\overline{E_{26}}}&{}{\overline{E_{66}}}&{}{E}_{66}&{}{\overline{F_{16}}}&{}{F}_{26}&{}{\overline{F_{66}}}&{}F_{66}\\ {C}_{16}&{}{\widetilde{C_{26}}}&{}C_{66}&{}{\overline{C_{66}}}&{}D_{16}&{}{\widetilde{D_{26}}}&{}D_{66}&{}{\widetilde{D_{66}}}&{}E_{16}&{}{\widetilde{E_{26}}}&{}E_{66}&{}{\widetilde{E_{66}}}&{}F_{16}&{}{\widetilde{F_{26}}}&{}F_{66}&{}{\widetilde{F_{66}}}\\ {\overline{D_{11}}}&{}{D}_{12}&{}{\overline{D_{16}}}&{}D_{16}&{}{\overline{E_{11}}}&{}E_{22}&{}{\overline{E_{16}}}&{}E_{16}&{}{\overline{F_{11}}}&{}F_{12}&{}{\overline{F_{16}}}&{}F_{16}&{}{\overline{G_{11}}}&{}G_{12}&{}{\overline{G_{16}}}&{}G_{16}\\ D_{12}&{}{\widetilde{D_{22}}}&{}D_{26}&{}{\widetilde{D_{26}}}&{}E_{12}&{}{\widetilde{E_{22}}}&{}E_{26}&{}{\widetilde{E_{26}}}&{}F_{12}&{}{\widetilde{F_{22}}}&{}F_{26}&{}{\widetilde{F_{26}}}&{}G_{12}&{}{\widetilde{G_{22}}}&{}G_{26}&{}{\widetilde{G_{26}}}\\ {\overline{D_{16}}}&{}{D}_{26}&{}{\overline{D_{66}}}&{}D_{66}&{}{\overline{E_{16}}}&{}E_{26}&{}{\overline{E_{66}}}&{}E_{66}&{}{\overline{F_{16}}}&{}F_{26}&{}{\overline{F_{66}}}&{}F_{66}&{}{\overline{G_{16}}}&{}G_{26}&{}{\overline{G_{66}}}&{}G_{66}\\ D_{16}&{}{\widetilde{D_{26}}}&{}D_{66}&{}{\overline{D_{66}}}&{}E_{16}&{}{\widetilde{E_{26}}}&{}E_{66}&{}{\widetilde{E_{66}}}&{}F_{16}&{}{\widetilde{F_{26}}}&{}F_{66}&{}{\widetilde{F_{66}}}&{}{G}_{16}&{}{\widetilde{G_{66}}}&{}G_{66}&{}{\widetilde{G_{66}}}\\ \end{array}} \right] \left\{ {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {{\varepsilon _{so}}}\\ {{\varepsilon _{ro}}} \end{array}}\\ {{\varepsilon _{sro}}}\\ {{\varepsilon _{rso}}} \end{array}}\\ {{\kappa _s}} \end{array}}\\ {{\kappa _r}} \end{array}}\\ {{\kappa _{sr}}}\\ {{\kappa _{rs}}} \end{array}}\\ {\varepsilon _{so}^*}\\ {\varepsilon _{ro}^*} \end{array}}\\ {\begin{array}{*{20}{c}} {\varepsilon _{sro}^*}\\ {\varepsilon _{rso}^*}\\ {\kappa _s^*}\\ {\kappa _r^*} \end{array}}\\ {\kappa _{sr}^*}\\ {\kappa _{rs}^*} \end{array}} \right\} \end{aligned}$$
$$\begin{aligned} \left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}c} Q_{s}\\ Q_{r}\\ \end{array} }\\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} S_{s}\\ S_{r}\\ \end{array} }\\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} Q_{s}^{*}\\ Q_{r}^{*}\\ \end{array} }\\ {\begin{array}{*{20}c} S_{s}^{*}\\ S_{r}^{*}\\ \end{array} }\\ \end{array} }\\ \end{array} }\\ \end{array} } \right\} =\left[ {\begin{array}{*{20}c} \overline{A_{44}} &{}\quad A_{45} &{}\quad \overline{B_{44}} &{}\quad B_{45} &{}\quad \overline{C_{44}} &{}\quad C_{45} &{}\quad \overline{D_{44}} &{}\quad D_{45}\\ A_{45} &{}\quad \widetilde{A_{55}} &{}\quad B_{45} &{}\quad \widetilde{B_{55}} &{}\quad C_{45} &{}\quad \widetilde{C_{55}} &{}\quad D_{45} &{}\quad \widetilde{D_{55}}\\ \overline{B_{44}} &{}\quad B_{45} &{}\quad \overline{C_{44}} &{}\quad C_{45} &{}\quad \overline{D_{44}} &{}\quad D_{45} &{}\quad \overline{E_{44}} &{}\quad E_{45}\\ B_{45} &{}\quad \widetilde{B_{55}} &{}\quad C_{45} &{}\quad \widetilde{C_{55}} &{}\quad D_{45} &{}\quad \widetilde{D_{55}} &{}\quad E_{45} &{}\quad \widetilde{E_{55}}\\ \overline{C_{44}} &{}\quad C_{45} &{}\quad \overline{D_{44}} &{}\quad D_{45} &{}\quad \overline{E_{44}} &{}\quad E_{45} &{}\quad \overline{F_{44}} &{}\quad F_{45}\\ C_{45} &{}\quad \widetilde{C_{55}} &{}\quad D_{45} &{}\quad \widetilde{D_{55}} &{}\quad E_{45} &{}\quad \widetilde{E_{55}} &{}\quad F_{45} &{}\quad \widetilde{F_{55}}\\ \overline{D_{44}} &{}\quad D_{45} &{}\quad \overline{E_{44}} &{}\quad E_{45} &{}\quad \overline{F_{44}} &{}\quad F_{45} &{}\quad \overline{G_{44}} &{}\quad G_{45}\\ D_{45} &{}\quad \widetilde{D_{55}} &{}\quad E_{45} &{}\quad \widetilde{E_{55}} &{}\quad F_{45} &{}\quad \widetilde{F_{55}} &{}\quad G_{45} &{}\quad \widetilde{G_{55}}\\ \end{array} } \right] \left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}c} \epsilon _{szo}\\ \epsilon _{rzo}\\ \end{array} }\\ \kappa _{sz}\\ {\begin{array}{*{20}c} \kappa _{rz}\\ \epsilon _{szo}^{*}\\ {\begin{array}{*{20}c} \epsilon _{rzo}^{*}\\ {\begin{array}{*{20}c} \kappa _{sz}^{*}\\ \kappa _{rz}^{*}\\ \end{array} }\\ \end{array} }\\ \end{array} }\\ \end{array} } \right\} \end{aligned}$$

where the values of above matrix coefficients are given by

$$\begin{aligned} \left( {{A_{ij}},~~{B_{ij}},~{C_{ij}},~{D_{ij}},~{E_{ij}},~{F_{ij}},~{G_{ij}},~{H_{ij}}~} \right) = \mathop \sum \limits _{k = 1}^n {\overline{Q}} _{ij}^{\left( k \right) }\mathop \smallint \nolimits _{{z_k}}^{{z_{k + 1}}} \left( {1,~z,{z^2},{z^3},{z^4},{z^5},{z^6},{z^7}} \right) ~d \end{aligned}$$

and

$$\begin{aligned} \overline{{A_{ij} }}= & {} A_{ij} -C_0 B_{ij} ,\quad \widetilde{{A_{ij} }}=A_{ij} +C_0 B_{ij} \\ \overline{{B_{ij} }}= & {} B_{ij} -C_0 C_{ij} ,\quad \widetilde{{ B_{ij} }}=B_{ij} +C_0 C_{ij} \\ \overline{{C_{ij} }}= & {} C_{ij} -C_0 D_{ij} ,\quad \widetilde{{{C_{ij} }}} =C_{ij} +C_0 D_{ij} \\ \overline{{D_{ij} }}= & {} D_{ij} -C_0 E_{ij} ,\quad \widetilde{{ D_{ij} }}=D_{ij} +C_0 E_{ij} \\ \overline{{E_{ij} }}= & {} E_{ij} -C_0 F_{ij} , \quad \widetilde{{{E_{ij} }}} =E_{ij} +C_0 F_{ij} \\ \overline{{F_{ij} }}= & {} F_{ij} -C_0 G_{ij} , \quad \widetilde{{{{F_{ij} }}}} =F_{ij} +C_0 G_{ij} \\ \overline{{G_{ij} }}= & {} G_{ij} -C_0 H_{ij} ,\quad \widetilde{{ G_{ij} }}=G_{ij} +C_0 H_{ij} \end{aligned}$$

where \(i, j = 1, 2, 4, 5, 6\)

and \(C_0 =\left( {\frac{1}{R_s }-\frac{1}{R_r }} \right) \)

Appendix B

The non-zero terms of strain–displacement matrix [B] are as follows:

$$\begin{aligned} B_{11}= & {} B_{32} =B_{54} =B_{75} =B_{96} =B_{11,7} =B_{13,8} =B_{15,9} =B_{17,3} =\frac{\partial N_i }{\partial s} \\ B_{13}= & {} -B_{17,1} =\frac{N_i }{R_s } \\ B_{22}= & {} B_{41} =B_{65} =B_{84} =B_{10,7} =B_{12,6} =B_{14,9} =B_{16,8} =B_{18,3} =\frac{\partial N_i }{\partial r} \\ B_{23}= & {} -B_{18,2} =\frac{N_i }{R_r } \\ B_{17,4}= & {} B_{18,5} =N_i \\ B_{19,6}= & {} B_{20,7} =2N_i \\ B_{21,6}= & {} \frac{N_i }{R_s } \\ B_{22,7}= & {} \frac{N_i }{R_r } \\ B_{21,8}= & {} B_{22,9} =3N_i \\ B_{23,8}= & {} \frac{2N_i }{R_s } \\ B_{24,9}= & {} \frac{2N_i }{R_r } \end{aligned}$$

Appendix C

The first derivatives of \({\bar{Q}}_{ij} \) with respect to \(\theta \) are as follows:

$$\begin{aligned} \frac{\partial {\bar{Q}}_{11} }{\partial \theta }= & {} 4\left( {Q_{12} -Q_{11} +2Q_{66} } \right) \sin \theta \cos ^{3}\theta -4(Q_{12} -Q_{22} +2Q_{66} )\sin ^{3}\theta \cos \theta \\ \frac{\partial {\bar{Q}}_{12} }{\partial \theta }= & {} 2\left( {Q_{11} +Q_{22} -2Q_{12} -4Q_{66} } \right) \sin \theta \cos ^{3}\theta -2(Q_{11} +Q_{22} -2Q_{12} -4Q_{66} )\sin ^{3}\theta \cos \theta \\ \frac{\partial {\bar{Q}}_{22} }{\partial \theta }= & {} 4\left( {Q_{12} -Q_{22} +2Q_{66} } \right) \sin \theta \cos ^{3}\theta -4(Q_{12} -Q_{11} +2Q_{66} )\sin ^{3}\theta \cos \theta \\ \frac{\partial {\bar{Q}}_{16} }{\partial \theta }= & {} 3\left( {2Q_{12} -Q_{11} -Q_{22} +4Q_{66} } \right) \sin ^{2}\theta \cos ^{2}\theta \\&-(Q_{12} -Q_{22} +2Q_{66} )\sin ^{4}\theta -\left( {Q_{12} -Q_{11} +2Q_{66} } \right) \cos ^{4}\theta \\ \frac{\partial {\bar{Q}}_{26} }{\partial \theta }= & {} -3\left( {2Q_{12} -Q_{11} -Q_{22} +4Q_{66} } \right) \sin ^{2}\theta \cos ^{2}\theta \\&+(Q_{12} -Q_{11} +2Q_{66} )\sin ^{4}\theta +\left( {Q_{12} -Q_{22} +2Q_{66} } \right) \cos ^{4}\theta \\ \frac{\partial {\bar{Q}}_{66} }{\partial \theta }= & {} 2\left( {Q_{11} -2Q_{12} +Q_{22} -4Q_{66} } \right) \sin \theta \cos ^{3}\theta -2(Q_{11} -2Q_{12} +Q_{22} -4Q_{66} )\sin ^{3}\theta \cos \theta \\ \frac{\partial {\bar{Q}}_{44} }{\partial \theta }= & {} 2\left( {Q_{55} -Q_{44} } \right) \sin \theta \cos \theta \\ \frac{\partial {\bar{Q}}_{45} }{\partial \theta }= & {} \left( {Q_{44} -Q_{55} } \right) (\sin ^{2}\theta -\cos ^{2}\theta ) \\ \frac{\partial {\bar{Q}}_{55} }{\partial \theta }= & {} 2\left( {Q_{44} -Q_{55} } \right) \sin \theta \cos \theta \end{aligned}$$

Appendix D

The first derivatives of shape function \(N_{i}\) with respect to natural coordinates \(\xi \) and \(\eta \) are as follows:

$$\begin{aligned} \frac{\partial N_1 }{\partial {\xi }}= & {} \frac{\left( {\eta +1} \right) \left( {{\xi }-\eta +1} \right) }{4} +\frac{\left( {{\xi }-1} \right) \left( {\eta +1} \right) }{4} \\ \frac{\partial N_2 }{\partial {\xi }}= & {} -{\xi }\left( {\eta +1} \right) \\ \frac{\partial N_3 }{\partial {\xi }}= & {} \frac{\left( {\eta +1} \right) \left( {{\xi }+\eta -1} \right) }{4}+ \frac{\left( {{\xi }+1} \right) \left( {\eta +1} \right) }{4} \\ \frac{\partial N_4 }{\partial {\xi }}= & {} \frac{1}{2}-\frac{\eta ^{2}}{2} \\ \frac{\partial N_5 }{\partial {\xi }}= & {} \frac{\left( {\eta - 1} \right) \left( {\eta -{\xi }+1} \right) }{4} -\frac{\left( {{\xi }+1} \right) \left( {\eta -1} \right) }{4} \\ \frac{\partial N_6 }{\partial {\xi }}= & {} {\xi }\left( {\eta -1} \right) \\ \frac{\partial N_7 }{\partial {\xi }}= & {} -\frac{\left( {\eta -1} \right) \left( {{\xi }+\eta +1} \right) }{4} -\frac{\left( {{\xi }-1} \right) \left( {\eta -1} \right) }{4} \\ \frac{\partial N_8 }{\partial {\xi }}= & {} \frac{\eta ^{2}}{2}-\frac{1}{2} \end{aligned}$$

And

$$\begin{aligned} \frac{\partial N_1 }{\partial \eta }= & {} \frac{\left( {{\xi }-1} \right) \left( {{\xi }-\eta +1} \right) }{4}-\frac{\left( {{\xi }-1} \right) \left( {\eta +1} \right) }{4} \\ \frac{\partial N_2 }{\partial \eta }= & {} \frac{1}{2}-\frac{{\xi }^{2}}{2} \\ \frac{\partial N_3 }{\partial \eta }= & {} \frac{\left( {{\xi }+1} \right) \left( {{\xi }+\eta -1} \right) }{4}+ \frac{\left( {{\xi }+1} \right) \left( {\eta +1} \right) }{4} \\ \frac{\partial N_4 }{\partial \eta }= & {} -\eta \left( {{\xi }+1} \right) \\ \frac{\partial N_5 }{\partial \eta }= & {} \frac{\left( {{\xi }+1} \right) \left( {\eta -{\xi }+1} \right) }{4}+\frac{\left( {{\xi }+1} \right) \left( {\eta -1} \right) }{4} \\ \frac{\partial N_6 }{\partial \eta }= & {} \frac{{\xi }^{2}}{2}-\frac{1}{2} \\ \frac{\partial N_7 }{\partial \eta }= & {} -\frac{\left( {{\xi }-1} \right) \left( {{\xi }+\eta +1} \right) }{4} -\frac{\left( {{\xi }-1} \right) \left( {\eta -1} \right) }{4} \\ \frac{\partial N_8 }{\partial \eta }= & {} \eta \left( {{\xi }-1} \right) \end{aligned}$$

Appendix E

The non-zero terms of the first derivatives the elements of [B] matrix with respect to \(R_{s}\):

$$\begin{aligned} \frac{\partial B_{11} }{Rs}= & {} \frac{\partial B_{32} }{Rs}=\frac{\partial B_{54} }{Rs}=\frac{\partial B_{75} }{Rs}\\= & {} \frac{\partial B_{96} }{Rs}=\frac{\partial B_{11,7} }{Rs}=\frac{\partial B_{13,8} }{Rs}=\frac{\partial B_{15,9} }{Rs}=\frac{\partial B_{17,3} }{Rs} \\= & {} - \,\frac{{\partial {N_i}}}{{\partial \xi }} \times \frac{{\partial z}}{{\partial \xi }} \times \sum \limits _{i = 1}^8 {\left( {\frac{{\partial {N_i}}}{{\partial \xi }}\frac{{\partial {Z_i}}}{{\partial {R_s}}}} \right) } /{\left\{ {{{\left( {\frac{{\partial x}}{{\partial \xi }}} \right) }^2} + {{\left( {\frac{{\partial y}}{{\partial \xi }}} \right) }^2} + {{\left( {\frac{{\partial z}}{{\partial \xi }}} \right) }^2}} \right\} ^{3/2}}\\ \frac{\partial B_{13} }{Rs}= & {} \frac{-\partial B_{17,1} }{Rs}=\frac{\partial B_{21,6} }{Rs}=-\frac{N_i }{R_s^2 } \\ \frac{\partial B_{22} }{Rs}= & {} \frac{\partial B_{41} }{Rs}=\frac{B_{65} }{Rs}=\frac{\partial B_{84} }{Rs} =\frac{\partial B_{10,7 } }{Rs}=\frac{\partial B_{12,6} }{Rs}=\frac{\partial B_{14,9} }{Rs}=\frac{\partial B_{16,8} }{Rs}=\frac{\partial B_{18,3} }{Rs} \\= & {} -\, \frac{{\partial {N_i}}}{{\partial \xi }} \times \frac{{\partial z}}{{\partial \xi }} \times \sum \limits _{i = 1}^8 {\left( {\frac{{\partial {N_i}}}{{\partial \xi }}\frac{{\partial {Z_i}}}{{\partial {R_s}}}} \right) } /{\left\{ {{{\left( {\frac{{\partial x}}{{\partial \xi }}} \right) }^2} + {{\left( {\frac{{\partial y}}{{\partial \xi }}} \right) }^2} + {{\left( {\frac{{\partial z}}{{\partial \xi }}} \right) }^2}} \right\} ^{3/2}} \\ \frac{\partial B_{23,8} }{Rs}= & {} -\frac{2N_i }{R_s^2 } \end{aligned}$$

The non-zero terms of the first derivatives the elements of [B] matrix with respect to \(R_{r}\):

$$\begin{aligned} \frac{\partial B_{11} }{Rr}= & {} \frac{\partial B_{32} }{Rr}=\frac{\partial B_{54} }{Rr}=\frac{\partial B_{75} }{Rr}=\frac{\partial B_{96} }{Rr}=\frac{\partial B_{11,7} }{Rr}=\frac{\partial B_{13,8} }{Rr}=\frac{\partial B_{15,9} }{Rr}=\frac{\partial B_{17,3} }{Rr} \\= & {} -\, \frac{{\partial {N_i}}}{{\partial \xi }} \times \frac{{\partial z}}{{\partial \xi }} \times \sum \limits _{i = 1}^8 {\left( {\frac{{\partial {N_i}}}{{\partial \xi }}\frac{{\partial {Z_i}}}{{\partial {R_s}}}} \right) } /{\left\{ {{{\left( {\frac{{\partial x}}{{\partial \xi }}} \right) }^2} + {{\left( {\frac{{\partial y}}{{\partial \xi }}} \right) }^2} + {{\left( {\frac{{\partial z}}{{\partial \xi }}} \right) }^2}} \right\} ^{3/2}}\\ \frac{\partial B_{22} }{Rr}= & {} \frac{\partial B_{41} }{Rr}=\frac{B_{65} }{Rr}=\frac{\partial B_{84} }{Rr} =\frac{\partial B_{10,7 } }{Rr}=\frac{\partial B_{12,6} }{Rr}=\frac{\partial B_{14,9} }{Rr}=\frac{\partial B_{16,8} }{Rr}=\frac{\partial B_{18,3} }{Rr} \\= & {} -\, \frac{{\partial {N_i}}}{{\partial \xi }} \times \frac{{\partial z}}{{\partial \xi }} \times \sum \limits _{i = 1}^8 {\left( {\frac{{\partial {N_i}}}{{\partial \xi }}\frac{{\partial {Z_i}}}{{\partial {R_s}}}} \right) } /{\left\{ {{{\left( {\frac{{\partial x}}{{\partial \xi }}} \right) }^2} + {{\left( {\frac{{\partial y}}{{\partial \xi }}} \right) }^2} + {{\left( {\frac{{\partial z}}{{\partial \xi }}} \right) }^2}} \right\} ^{3/2}}\\ \frac{\partial B_{23} }{Rr}= & {} \frac{-\partial B_{18,2} }{Rr}=\frac{\partial B_{22,7} }{Rr}=-\frac{N_i }{R_r^2 } \\ \frac{\partial B_{24,9} }{Rr}= & {} -\frac{2N_i }{R_r^2 } \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, S.N., Ray, C. & Chakraborty, S. Response sensitivity analysis of laminated composite shells based on higher-order shear deformation theory. Arch Appl Mech 88, 1429–1459 (2018). https://doi.org/10.1007/s00419-018-1380-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1380-z

Keywords

Navigation