Skip to main content
Log in

Nonlinear dynamic response of a rub-impact rod fastening rotor considering nonlinear contact characteristic

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The nonlinear dynamic characteristics of a rub-impact rod fastening rotor have been investigated in this paper. A model of the rod fastening rotor bearing system under rub-impact condition is proposed considering nonlinear contact characteristic between disks, nonlinear oil-film force, unbalance mass, etc. The equation of motion of the system has been derived by D’Alembert principle. The contact effects between disks are modeled as a flexural spring with nonlinear stiffness. The dynamic equations of motion are solved using fourth-order Runge–Kutta method. Bifurcation diagram, vibration waveform, frequency spectrum, shaft orbit and Poincaré map are used to illustrate the rich diversity of the system response with complicated dynamics. The studies indicate that it is unsuitable to take the rod fastening rotor as an integral rotor in analyzing the rub-impact dynamic response of the system. The subharmonic periodic motion, multiple periodic motion, quasi-periodic motion and chaotic motion are observed in this study. Larger radial stiffness of stator will simplify the system motion and make the oil whirl weaker or even disappear at a certain rotating speed. The corresponding results can provide the guidance for the fault diagnosis of a rub-impact rod fastening rotor; meanwhile, the study may contribute to the further understanding of the nonlinear dynamic characteristics of a rub-impact rod fastening rotor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

c :

Radial clearance of bearing

\(\mu \) :

Oil viscosity

L :

Bearing length

R :

Bearing radius

\(\delta \) :

Sommerfeld correction coefficient

h :

Thickness of oil-film

p :

Dimensionless pressure of oil-film

\(F_{x}, F_{y}\) :

Nonlinear oil-film force in x direction and y direction

\(f_{x}, f_{y}\) :

Dimensionless nonlinear film force in x direction and y direction

\(P_{T}, P_{N}\) :

Impact force in radial and tangential direction

\(P_{x} \quad P_{y}\) :

Impact force in x direction and y direction

\(\eta \) :

Friction coefficient

\(r_{0}\) :

Initial clearance

\(k_{c}\) :

Radial stiffness of stator

\(F_{cx}, F_{cy}\) :

Restoring force of contact layer in x direction and y direction

\(m_{\mathrm{b1}}, m_{\mathrm{b2}}\) :

Lumped mass of bearings

\(m_{1}, m_{2}\) :

Lumped mass of disks

\(e_{1}, e_{2}\) :

Eccentric distance of disks

\(\varphi \) :

Angle between initial deflection and unbalance mass

k :

Shaft stiffness

\(k_{1}\) :

Linear contact stiffness

\(k_{1}^\prime \) :

Nonlinear contact stiffness

\(c_{1}\) :

Damping of bearing

\(c_{2}\) :

Damping of disk

\(c_{3}\) :

Damping of contact layer

\(x_{i}, y_{i}\,(i=1,2)\) :

Displacements of disks in x direction and y direction

\(x_{bi}, y_{bi}\,(i=1,2)\) :

Displacements of bearings in x direction and y direction

\(\omega \) :

Rotating speed

References

  1. Muszynska, A.: Rotor-to-stationary element rub-related vibration phenomenon in rotating machinery-Literature survey. Shock Vib. Dig. 21, 3–11 (1989)

    Article  Google Scholar 

  2. Ma, H., Yang, J., Song, R.Z., Neng, H.Q., Wen, B.C.: Review and prospect on the research of rub-impact experiment of rotor systems. J. Vib. Shock 33(06), 1–12 (2014)

    Google Scholar 

  3. Ehrich, F.F.: Some observations of chaotic vibration phenomena in high-speed rotordynamics. J. Vib. Acoust. 113(1), 50–57 (1991)

    Article  Google Scholar 

  4. Sun, Z.C., Xu, J.X., Zhou, T.: Analysis on complicated characteristics of a high-speed rotor system with rub-impact. Mech. Mach. Theory 37, 659–672 (2002)

    Article  MATH  Google Scholar 

  5. Goldman, P., Muszynska, A.: Chaotic behavior of rotor_stator systems with rubs. J. Eng. Gas Turbines Power 116(3), 692–701 (1994)

    Article  Google Scholar 

  6. Huang, Z.W., Zhou, J.Z., Yang, M.Q., Zhang, Y.C.: Vibration characteristics of a hydraulic generator unit rotor system with parallel misalignment and rub-impact. Arch. Appl. Mech. 81(7), 829–838 (2010)

    Article  MATH  Google Scholar 

  7. Wang, J.G., Zhou, J.Z., Dong, D.W., Yan, B., Huang, C.R.: Nonlinear dynamic analysis of a rub-impact rotor supported by oil film bearings. Arch. Appl. Mech. 83(3), 413–430 (2012)

    Article  MATH  Google Scholar 

  8. Chu, F., Zhang, Z.: Bifurcation and chaotic in a rub-impact Jeffcott rotor system. J. Sound Vib. 210(1), 1–18 (1998)

    Article  Google Scholar 

  9. Ma, H., Yu, T., Han, Q., Zhang, Y., Wen, B., Chen, X.L.: Time–frequency features of two types of coupled rub-impact faults in rotor systems. J. Sound Vib. 321(3–5), 1109–1128 (2009)

    Article  Google Scholar 

  10. Chang, J., Cai, W., Chen, C.K.: Chaos of rub-impact rotor supported by bearings with nonlinear suspension. Tribol. Int. 42(3), 426–439 (2009)

    Article  Google Scholar 

  11. Zhang, L.K., Ma, Z.Y., Song, B.W.: Dynamic characteristics of a rub-impact rotor-bearing system for hydraulic generating set under unbalanced magnetic pull. Arch. Appl. Mech. 83(6), 817–830 (2012)

    Article  MATH  Google Scholar 

  12. Khanlo, H.M., Ghayour, M., Ziaei, R.S.: The effects of lateral–torsional coupling on the nonlinear dynamic behavior of a rotating continuous flexible shaft–disk system with rub-impact. Commun. Nonlinear Sci. Numer. Simul. 18(6), 1524–1538 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Varney, P., Green, I.: Nonlinear phenomena, bifurcations, and routes to chaos in an asymmetrically supported rotor–stator contact system. J. Sound Vib. 336, 207–226 (2015)

    Article  Google Scholar 

  14. Ma, H., Shi, C.Y., Han, Q.K., Wen, B.C.: Fixed-point rubbing fault characteristic analysis of a rotor system based on contact theory. Mech. Syst. Signal Process. 38(1), 137–153 (2013)

    Article  Google Scholar 

  15. Tai, X.Y., Ma, H., Liu, F.H., Liu, Y., Wen, B.C.: Stability and steady-state response analysis of a single rub-impact rotor system. Arch. Appl. Mech. 85(1), 133–148 (2014)

    Article  Google Scholar 

  16. Edwards, S., Lees, A.W., Friswell, M.I.: The influence of torsion on rotor_stator contact in rotating machinery. J. Sound Vib. 225(4), 767–778 (1999)

    Article  Google Scholar 

  17. Sun, Z.C., Xu, J.X., Zhou, T., Tan, N.: Study on influence of bending-torsion coupling in an impacting-rub rotor system. Appl. Math. Mech. 24(11), 1316–1323 (2003)

    Article  Google Scholar 

  18. Patel, T.H., Zuo, M.J., Zhao, X.M.: Nonlinear lateral–torsional coupled motion of a rotor contacting a viscoelastically suspended stator. Nonlinear Dyn. 69, 325–339 (2011)

    Article  Google Scholar 

  19. Chu, F.L., Li, Z.N., Yue, X.M., Wang, S.B., Yuan, Z.W.: Dynamic analysis of rotor’s radial rub-impact in full degrees of freedom accounting for turborotor’s non-linear clearance-excitation force. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 222(9), 1647–1653 (2008)

    Article  Google Scholar 

  20. Al-Bedoor, B.O.: Transient torsional and lateral vibrations of unbalanced rotors with rotor-to-stator rubbing. J. Sound Vib. 229(3), 627–645 (2000)

    Article  Google Scholar 

  21. Ma, H., Yin, F.L., Wu, Z.Y., Tai, X.Y., Wen, B.C.: Nonlinear vibration response analysis of a rotor–blade system with blade-tip rubbing. Nonlinear Dyn. 84(3), 1225–1258 (2015)

    Article  MathSciNet  Google Scholar 

  22. He, P., Liu, Z.H., Huang, F.L., Liu, Z.X.: Experimental study of the variation of tie-bolt fastened rotor critical speeds with tighten force. J. Vib. Meas. Diagn. 34(04), 644–649, 775 (2014)

  23. Yuan, Q., Gao, J., Li, P.: Nonlinear dynamics of the rod-fastened Jeffcott rotor. J. Vib. Acoust. 136, 1–10 (2014)

    Article  Google Scholar 

  24. Li, H.G., Liu, H., Yu, L.: Nonlinear dynamic behaviors and stability of circumferential rod fastening rotor system. J. Mech. Eng. 47(23), 82–91 (2011)

    Article  Google Scholar 

  25. Hei, D., Lu, Y.J., Zhang, Y.F., Lu, Z.Y., Gupta, P., Müller, N.: Nonlinear dynamic behaviors of a rod fastening rotor supported by fixed-tilting pad journal bearings. Chaos Solitons Fractals 69, 129–150 (2014)

    Article  Google Scholar 

  26. Hei, D., Lu, Y.J., Zhang, Y.F., Liu, F.X., Zhou, C., Müller, N.: Nonlinear dynamic behaviors of rod fastening rotor-hydrodynamic journal bearing system. Arch. Appl. Mech. 85(7), 855–875 (2015)

    Article  MATH  Google Scholar 

  27. Cheng, L., Qian, Z.W., Chen, W., Fan, J.D.: Influence of structural parameters on the bistable response of a disk-rod-fastening rotor. J. Vib. Meas. Diagn. 32(05), 767–772, 862–863 (2012)

  28. Qian, Z.W., Cheng, L., Chen, W., Li, Y.H.: Analysis on bistable response of a disk-rod-fastening rotor. J. Aerosp. Power 26(07), 1563–1568 (2011)

    Google Scholar 

  29. Mat Isa, A.A., Penny, J.E.T., Garvey, S.D.: Dynamics of bolted and laminated rotors. In: 18th IMAC Conference on Computational Challenges in Structural Dynamics, pp. 867–873 (2000)

  30. Liu, S.G., Ma, Y.H., Zhang, D.Y., Hong, J.: Studies on dynamic characteristics of the joint in the aero-engine rotor system. Mech. Syst. Signal Process. 29, 120–136 (2012)

    Article  Google Scholar 

  31. Qin, Z.Y., Han, Q.K., Chu, F.L.: Analytical model of bolted disk–drum joints and its application to dynamic analysis of jointed rotor. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 228(4), 646–663 (2013)

    Article  Google Scholar 

  32. Capone, G.: Analytical description of fluid–dynamic force field in cylindrical journal bearing. L’Energia Elettrica 3, 105–110 (1991)

    Google Scholar 

  33. Adiletta, G., Guido, A.R., Rossi, C.: Chaotic motions of a rigid rotor in short journal bearings. Nonlinear Dyn. 10, 251–269 (1996)

    Article  Google Scholar 

  34. Li, Y.N., Zheng, L., Wen, B.C.: Nonlinear model of bolted joint and its wave energy dissipation. J. Vib. Eng. 16(2), 137–142 (2003)

    Google Scholar 

  35. Shen, X.Y., Jia, J.H., Zhao, Mei: Nonlinear analysis of a rub-impact rotor-bearing system with initial permanent rotor bow. Arch. Appl. Mech. 78, 225–240 (2008)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the Construction Project Special Funds of Beijing China (No. ZDZH20141005401), National Natural Science Foundation of China (No. 51575180) and the Fundamental Research Funds for the Central Universities (No. 2015XS79).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Liu, Y., Zhao, L. et al. Nonlinear dynamic response of a rub-impact rod fastening rotor considering nonlinear contact characteristic. Arch Appl Mech 86, 1869–1886 (2016). https://doi.org/10.1007/s00419-016-1152-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-016-1152-6

Keywords

Navigation