Skip to main content

Advertisement

Log in

Decreased blood flow at neuroretinal rim of optic nerve head corresponds with visual field deficit in eyes with normal tension glaucoma

  • Clinical invetigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To determine the relationship between the blood flow parameters of the optic disc rim and the glaucomatous visual field changes.

Design

Observational cross-sectional study.

Methods

Tissue blood flow in the neuroretinal rim within the optic disc was determined with the Heidelberg retina flowmeter(HRF) in 54 eyes of 54 patients with normal tension glaucoma (NTG). Patients were selected whose visual field defects were confined to either the superior or inferior hemifield. Blood flow measurements were made in a 10°×2.5° area of the superior and inferior neuroretinal rim within the optic disc. The mean blood flow (MBF) was calculated by the automatic full-field perfusion image analyzer program, and the ratio of the MBF in the superior to the inferior rim areas (the S/I ratio) was calculated from the same HRF image in order to minimize the variation of measurement condition.

Results

Inferior rim blood flow is less than superior rim blood flow in patients with superior hemifield defect, and superior rim blood flow is reduced compared to inferior in patients with inferior hemifield defect. The mean S/I ratios of the MBF in the patients with superior hemifield defect (1.46, n=37) was significantly higher than that in the patients with inferior hemifield defect (0.79, n=17; P<0.0001, Mann-Whitney U-test).

Conclusions

The blood flow in the neuroretinal rim was found to correspond to the regional visual field defect in eyes with NTG. Reductions in flow were associated with reductions in function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anderson DR., Patella VM (1999) Interpretation of a Single Field. In: Anderson DR., Patella VM(ed), Automated static perimetry 2nd ed. CV Mosby, St Louis, pp121–190

    Google Scholar 

  2. Arend O, Remky A, Cantor LB, Harris A (2000) Altitudinal visual field asymmetry is coupled with altered retinal circulation in patients with normal pressure glaucoma. Br J Ophthalmol 84:1008–1012

    Article  PubMed  CAS  Google Scholar 

  3. Chung HS, Harris A, Kagemann L, Martin B (1999) Peripapillary retinal blood flow in normal tension glaucoma. Br J Ophthalmol 83:466–469

    PubMed  CAS  Google Scholar 

  4. Drans SM, Anderson DR (1995) Optic Nerve Blood Flow. In: Drans SM, Anderson DR(ed), Optic Nerve in Glaucoma. Kugler Publications, Amsterdam/New York, pp311–331

    Google Scholar 

  5. Flammer J, Orgul S (1998) Optic nerve blood-flow abnormalities in glaucoma. Prog Retin Eye Res 17:267–289

    Article  PubMed  CAS  Google Scholar 

  6. Gramer E, Tausch M (1995) The risk profile of the glaucomatous patient. Curr Opin Ophthalmol 6:78–88

    PubMed  CAS  Google Scholar 

  7. Grunwald JE, Piltz J, Hariprasad SM, DuPont J (1998) Optic nerve and choroidal circulation in glaucoma.Invest Ophthalmol Vis Sci 39:2329–2336

    PubMed  CAS  Google Scholar 

  8. Harrington DO (1965) The Bjerrum scotoma. Am J Ophthalmol 59:646–656

    PubMed  CAS  Google Scholar 

  9. Harris A, Kagemann L, Cioffi GA (1998) Assessment of human ocular hemodynamics. Surv Ophthalmol 42:509–533

    Article  PubMed  CAS  Google Scholar 

  10. Harris A, Chung HS, Ciulla TA, Kagemann L (1999) Progress in measurement of ocular blood flow and relevance to our understanding of glaucoma and age-related macular degeneration. Prog Retin Eye Res 18:669–687

    Article  PubMed  CAS  Google Scholar 

  11. Harris A, Ishii Y, Chung HS, Jonescu-Cuypers CP, McCranor LJ, Kagemann L, Garzozi HJ (2003) Blood flow per unit retinal nerve fibre tissue volume is lower in the human inferior retina. Br J Ophthalmol 87:184–188

    Article  PubMed  CAS  Google Scholar 

  12. Hart WM Jr, Becker B (1982) The onset and evolution of glaucomatous visual field defects. Ophthalmology 89:268–279

    PubMed  Google Scholar 

  13. Hayreh SS (1995) The optic nerve head circulation in health and disease. Exp Eye Res 61:259–272

    Article  PubMed  CAS  Google Scholar 

  14. Hayreh SS (2001) The blood supply of the optic nerve head and the evaluation of it - myth and reality. Prog Retin Eye Res 20:563–593

    Article  PubMed  CAS  Google Scholar 

  15. Hollo G, van den Berg TJ, Greve EL (1996–97) Scanning laser Doppler flowmetry in glaucoma. Int Ophthalmol 20:63–70

    Google Scholar 

  16. Hollo G, Greve EL, van den Berg TJ, Vargha P (1996–97) Evaluation of the peripapillary circulation in healthy and glaucoma eyes with scanning laser Doppler flowmetry. Int Ophthalmol 20:71–77

    Google Scholar 

  17. Hosking SL, Embleton SJ, Cunliffe IA (2001) Application of a local search strategy improves the detection of blood flow deficits in the neuroretinal rim of glaucoma patients using scanning laser Doppler flowmetry. Br J Ophthalmol 85:1298–1302

    Article  PubMed  CAS  Google Scholar 

  18. Iwase A, Suzuki Y, Araie M, Yamamoto T, Abe H, Shirato S, Kuwayama Y, Mishima HK, Shimizu H, Tomita G, Inoue Y, Kitazawa Y; Tajimi Study Group, Japan Glaucoma Society (2004) The prevalence of primary open-angle glaucoma in Japanese: the Tajimi Study. Ophthalmology 111:1641–1648

    Article  PubMed  Google Scholar 

  19. Jonas JB, Fernandez MC, Sturmer J (1993) Pattern of glaucomatous neuroretinal rim loss. Ophthalmology 100:63–68

    PubMed  CAS  Google Scholar 

  20. Jonas JB, Harazny J, Budde WM, Mardin CY, Papastathopoulos KI, Michelson G (2003) Optic disc morphometry correlated with confocal laser scanning Doppler flowmetry measurements in normal-pressure glaucoma. J Glaucoma 12:260–265

    Article  PubMed  Google Scholar 

  21. Kagemann L, Harris A, Chung HS, Evans D, Buck S, Martin B (1998) Heidelberg retinal flowmetry: factors affecting blood flow measurement. Br J Ophthalmol 82:131–136

    Article  PubMed  CAS  Google Scholar 

  22. Kimura I, Shinoda K, Ohtake Y, Tanino T, Mashima Y (2005) Effect of topical isopropyl unoprostone on optic nerve head circulation in normal subjects and in NTG patients. Jap J Ophthalmol 49:in press

  23. Logan JF, Rankin SJ, Jackson AJ (2004) Retinal blood flow measurements and neuroretinal rim damage in glaucoma Br J Ophthalmol 88:1049–1054

    Article  PubMed  CAS  Google Scholar 

  24. Michelson G, Langhans MJ, Groh MJ (1996) Perfusion of the juxtapapillary retina and the neuroretinal rim area in primary open angle glaucoma. J Glaucoma 5:91–98

    PubMed  CAS  Google Scholar 

  25. Michelson G, Schmauss B, Langhans MJ, Harazny J, Groh MJ (1996) Principle, validity, and reliability of scanning laser Doppler flowmetry. J Glaucoma 5:99–105

    PubMed  CAS  Google Scholar 

  26. Michelson G, Schmauss B (1995) Two dimensional mapping of the perfusion of the retina and optic nerve head. Br J Ophthalmol 79:1126–1132

    Article  PubMed  CAS  Google Scholar 

  27. Michelson G, Welzenbach J, Pal I, Harazny J (1998) Automatic full field analysis of perfusion images gained by scanning laser Doppler flowmetry. Br J Ophthalmol 82:1294–1300

    Article  PubMed  CAS  Google Scholar 

  28. Nicolela MT, Hnik P, Drance SM (1996) Scanning laser Doppler flowmeter study of retinal and optic disk blood flow in glaucomatous patients. Am J Ophthalmol 122:775–783 Erratum in: Am J Ophthalmol 1997 123:575

    PubMed  CAS  Google Scholar 

  29. Piltz-Seymour JR, Grunwald JE, Hariprasad SM, Dupont J (2001) Optic nerve blood flow is diminished in eyes of primary open-angle glaucoma suspects. Am J Ophthalmol 132:63–69

    Article  PubMed  CAS  Google Scholar 

  30. Quigley HA, Addicks EM (1981) Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch Ophthalmol 99:137–143

    PubMed  CAS  Google Scholar 

  31. Shields MB (1998) Visual function in glaucoma. In: Shields MB(ed), Shields' textbook in glaucoma 3rd ed. Williams and Wilkins, Baltimore, pp180–186

    Google Scholar 

  32. Spaeth GL (1971) Pathogenesis of visual loss in patients with glaucoma. Pathologic and sociologic considerations. Trans Am Acad Ophthalmol Otolaryngol 75:296–317

    PubMed  CAS  Google Scholar 

  33. Stamper RL, Lieberman MF, Drake MV (1999) Optic Nerve Anatomy and Pathophisiology. In: Stamper RL, Lieberman MF, Drake MV(ed), Becker-Shaffer's Diagnosis and Therapy of the Glaucomas. CV Mosby, St Louis, pp177–190

    Google Scholar 

  34. Yamazaki Y, Drance SM (1997) The relationship between progression of visual field defects and retrobulbar circulation in patients with glaucoma. Am J Ophthalmol 124:287–295

    PubMed  CAS  Google Scholar 

  35. Yaoeda K, Shirakashi M, Fukushima A, Funaki S, Funaki H, Abe H, Tanabe N (2003) Relationship between optic nerve head microcirculation and visual field loss in glaucoma. Acta Ophthalmol Scand 81:253–259

    Article  PubMed  Google Scholar 

  36. Zink JM, Grunwald JE, Piltz-Seymour J, Staii A, Dupont J (2003) Association between lower optic nerve laser Doppler blood volume measurements and glaucomatous visual field progression. Br J Ophthalmol 87:1487–1491

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itaru Kimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, E.A., Ohtake, Y., Shinoda, K. et al. Decreased blood flow at neuroretinal rim of optic nerve head corresponds with visual field deficit in eyes with normal tension glaucoma. Graefe's Arch Clin Exp Ophthalmo 244, 795–801 (2006). https://doi.org/10.1007/s00417-005-0177-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-005-0177-2

Keywords

Navigation