Skip to main content

Advertisement

Log in

Hyperconvolution of the inner limiting membrane in vitreomaculopathies

  • Laboratory Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

This study investigates the similarities and differences between epiretinal membranes in four clinically distinct types of vitreomaculopathy. We propose a hypothesis on the origin of the predominant cell type and its potential role in causing these conditions.

Methods

Epiretinal membranes (ERMs) surgically removed from a prospective, consecutive series of vitrectomies for macular pucker associated with an untreated peripheral horseshoe tear (MP), cellophane maculopathy (CM), stage 4 macular hole (MH) and vitreomacular traction syndrome (VMT) were examined by light microscopy and by immunocytochemistry (ICC) using antibodies marking type IV collagen, type II collagen, glial fibrillary acidic protein (GFAP), and low- and high-molecular-weight cytokeratin (MNF116). These specimens were compared with post-mortem control eyes with and without physiological posterior vitreous detachment (PVD). Light microscopy was carried out on 5-μm-thick sections cut from formalin-fixed, paraffin-embedded tissue blocks. Appropriate autoclave or enzyme pre-digestion steps were deployed to retrieve antigens for ICC. No patient had undergone previous vitreoretinal surgery or peripheral retinopexy.

Results

From a series of 38 patients, (13 CM, 8 MP, 16 MH and 1 VMT) a total of 20 specimens contained sufficient tissue for histology and immunocytochemistry. All specimens contained portions of inner limiting membrane (ILM) coated by GFAP-positive cells. Specimens from patients with MP and CM exhibited hyperconvolution of the ILM, which was not found in the specimens from patients with MH or VMT or in the control eyes. Hyperconvolution was associated with increased glial cell density, GFAP staining intensity and duplication of ILM basement membrane. Three cases of ERMs from the MP group contained, in addition, cytokeratin-positive cells. In the control group; post-mortem eyes with PVDs showed patchy staining of the posterior hyaloid membrane for GFAP and type 4 collagen. Post-mortem eyes with attached gel showed weak positivity of the ILM for type 4 collagen, and a monolayer of GFAP-positive cells lined the vitreous aspect of the ILM.

Conclusions

These results indicate that glial cells are fundamentally important in the formation of ERMs found in this group of vitreomaculopathies. The hyperconvolution and duplication of the ILM in CM and MP were striking and distinctive features and suggest a mechanism by which these membranes exert tractional forces on the retina. Post-mortem control eyes contained a similar (but more dispersed) population of GFAP-positive cells in the region of the ILM, suggesting the primary aetiology for CM and MP may originate within the ILM. ERMs from MP cases may, in addition, contain cytokeratin-positive cells, of probable RPE origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gandorfer A, Rohleder M, Kampik A (2002) Epiretinal pathology of vitreomacular traction syndrome. Br J Ophthalmol 86(8):902–909

    Article  CAS  PubMed  Google Scholar 

  2. Green WR, Kenyon KR, Michels RG, Gilbert HD, De La Cruz Z (1979) Ultrastructure of epiretinal membranes causing macular pucker after retinal re-attachment surgery. Trans Ophthalmol Soc UK 99(1):65–77

    CAS  PubMed  Google Scholar 

  3. Guerin CJ, Wolfshagen RW, Eifrig DE, Anderson DH (1990) Immunocytochemical identification of Muller’s glia as a component of human epiretinal membranes. Invest Ophthalmol Vis Sci 31(8):1483–1491

    CAS  PubMed  Google Scholar 

  4. Hiscott PS, Grierson I, McLeod D (1984) Retinal pigment epithelial cells in epiretinal membranes: an immunohistochemical study. Br J Ophthalmol 68(10):708–715

    CAS  PubMed  Google Scholar 

  5. Kampik A, Green WR, Michels RG, Nase PK (1980) Ultrastructural features of progressive idiopathic epiretinal membrane removed by vitreous surgery. Am J Ophthalmol 90(6):797–809

    CAS  PubMed  Google Scholar 

  6. Morino I, Hiscott P, McKechnie N, Grierson I (1990) Variation in epiretinal membrane components with clinical duration of the proliferative tissue. Br J Ophthalmol 74(7):393–399

    CAS  PubMed  Google Scholar 

  7. Cherfan GM, Smiddy WE, Michels RG, de la Cruz Z, Wilkinson CP, Green WR (1988) Clinicopathologic correlation of pigmented epiretinal membranes. Am J Ophthalmol 106(5):536–545

    CAS  PubMed  Google Scholar 

  8. Smiddy WE, Michels RG, Green WR (1990) Morphology, pathology, and surgery of idiopathic vitreoretinal macular disorders. A review. Retina 10(4):288–296

    CAS  PubMed  Google Scholar 

  9. McLeod D, Hiscott P, Grierson I (1987) Age-related cellular proliferation at the vitreoretinal juncture. Eye 1:263–281

    PubMed  Google Scholar 

  10. Snead M, Snead D, Mahmood A, Scott J (1994) Vitreous detachment and the posterior hyaloid membrane: a clinicopathological study. Eye 8:204–209

    PubMed  Google Scholar 

  11. Snead M, Snead D, Richards A, Harrison J, Poulson A, Morris A, Sheard R, Scott J (2002) Clinical, histological, and ultrastructural studies of the posterior hyaloid membrane. Eye 16:447–453

    Article  CAS  PubMed  Google Scholar 

  12. Smiddy WE, Maguire AM, Green WR, Michels RG, de la Cruz Z, Enger C, Jaeger M, Rice TA (1989) Idiopathic epiretinal membranes. Ultrastructural characteristics and clinicopathological correlation. Ophthalmology 96:811–821

    CAS  PubMed  Google Scholar 

  13. Kampik A, Kenyon KR, Michels RG, Green WR (1981) Epi-retinal and vitreous membranes: comparative study of 56 cases. Arch Ophthalmol 99:1445–1454

    CAS  PubMed  Google Scholar 

  14. Maguire AM, Smiddy WE, Nanda SK, Michels RG, de la Cruz Z, Green WR (1990) Clinicopathologic correlation of recurrent epiretinal membranes after previous surgical removal. Retina 10(3):213–222

    CAS  PubMed  Google Scholar 

  15. Okada M, Ogino N, Matsumura M, Honda Y, Nagai Y (1995) Histological and immunohistochemical study of idiopathic epiretinal membrane. Ophthalmic Res 27(2):118–128

    CAS  PubMed  Google Scholar 

  16. Sivalingam A, Eagle RC, Duker JS, Brown GC, Benson WE, Annesley WH, Federman J (1990) Visual prognosis correlated with the presence of internal-limiting membrane in histopathologic specimens obtained from epiretinal membrane surgery. Ophthalmology 97(11):1549–1552

    CAS  PubMed  Google Scholar 

  17. Brooks HLJ (2000) Macular hole surgery with and without internal limiting membrane peeling. Ophthalmology 132:363–369

    Google Scholar 

  18. Haritoglou C, Gandorfer A, Gass CA, Schaumberger M, Ulbig MW, Kampik A (2002) Indocyanine green-assisted membrane peeling of the internal limiting membrane in macular hole surgery affects visual outcome: a clinicopathologic correlation

  19. Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP—thirty-one years (1969–2000). Neurochem Res 25(9–10):1439–1451

    Article  CAS  PubMed  Google Scholar 

  20. Foos RY (1974) Vitreoretinal juncture—simple epiretinal membranes. Graefes Arch Clin Exp Ophthalmol 189:231–250

    CAS  Google Scholar 

  21. Roth AM, Foos RY (1971) Surface wrinkling retinopathy in eyes enucleated at autopsy. Trans Am Ophthalmol Otol 75:1047–1058

    CAS  Google Scholar 

  22. Messmer EM, Heidenkummer HP, Kampik A (1998) Ultrastructure of epiretinal membranes associated with macular holes. Graefes Arch Clin Exp Ophthalmol 236(4):248–254

    Article  CAS  PubMed  Google Scholar 

  23. Ishida S, Yamazaki K, Shinoda K, Kawashima S, Oguchi Y (2000) Macular hole retinal detachment in highly myopic eyes: ultrastructure of surgically removed epiretinal membrane and clinicopathologic correlation. Retina 20(2):176–183

    Article  CAS  PubMed  Google Scholar 

  24. Hiscott P, Grierson I, McLeod D (1985) Natural history of fibrocellular epiretinal membranes: a quantitative, autoradiographic and immunohistochemical study. Br J Ophthalmol 69(11):810–823

    CAS  PubMed  Google Scholar 

  25. Heilskov TW, Massicotte SJ, Folk JC (1996) Epiretinal macular membranes in eyes with attached posterior cortical vitreous. Retina 16(4):279–284

    CAS  PubMed  Google Scholar 

  26. de Juan E, Lambert HM, Machemer R (1985) Recurrent proliferations in macular pucker, diabetic retinopathy, and retrolental fibroplasialike disease after vitrectomy. Graefes Arch Clin Exp Ophthalmol 223(4):174–183

    PubMed  Google Scholar 

  27. Lincoff H, O’Connor P, Kreissig I (1970) Retinal adhesion after cryopexy. Klin Monatsbl Augenheilkd 156(6):771–783

    CAS  PubMed  Google Scholar 

  28. Foos RY (1972) Vitreoretinal juncture: topographical variations. Invest Ophthalmol 11(10):801–808

    CAS  PubMed  Google Scholar 

  29. Foos RY (1977) Vitreoretinal juncture: epiretinal membranes and vitreous. Invest Ophthalmol Vis Sci 16(5):416–422

    CAS  PubMed  Google Scholar 

  30. Haddad A, Salazar JJ, Laicine EM, Ramirez AI, Ramirez JM, Trivino A (2003) A direct contact between astrocyte and vitreous body is possible in the rabbit eye due to discontinuities in the basement membrane of the retinal inner limiting membrane. Braz J Med Biol Res 36:207–211

    CAS  PubMed  Google Scholar 

  31. Zimmerman LE, Straatsma BR (1960) Importance of the vitreous body in retina surgery with special emphasis on re-operations. Mosby, St Louis

    Google Scholar 

  32. Bovino JA (1994) Macular surgery. Appleton and Lange, Norwalk

    Google Scholar 

  33. Sebag J (1989) The vitreous. Springer, New York Berlin Heidelberg

    Google Scholar 

Download references

Acknowledgement

Figure 4e is reprinted from reference 11 by kind permission of the editor of Eye.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. J. Snead.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snead, D.R.J., Cullen, N., James, S. et al. Hyperconvolution of the inner limiting membrane in vitreomaculopathies. Graefe's Arch Clin Exp Ophthalmol 242, 853–862 (2004). https://doi.org/10.1007/s00417-004-1019-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-004-1019-3

Keywords

Navigation