Skip to main content

Advertisement

Log in

Brain activity during lower limb movements in Parkinson’s disease patients with and without freezing of gait

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

In this study, we assessed brain functional MRI (fMRI) activity during a foot movement task in Parkinson’s disease patients with (PD-FoG) and without freezing of gait (PD-noFoG). Twenty-seven PD patients (17 PD-FoG) and 18 healthy controls (HC) were recruited. PD-FoG cases were divided into nine with mild and eight with moderate FoG according to the FoG questionnaire. Patients underwent motor and neuropsychological evaluations. Both patients and controls performed an fMRI task consisting of alternate dorsal/plantar foot flexion movements according to an auditory stimulus of 0.5 Hz. PD-FoG and PD-noFoG patients were similar for all motor variables (except for the presence of FoG). PD-FoG patients performed worse in executive, attention and working memory, visuospatial, language and memory cognitive tests relative to HC and in executive and language functions compared with PD-noFoG patients. While PD-noFoG patients showed an increased recruitment of the fronto-striatal circuit relative to HC during the fMRI task, PD-FoG subjects showed an increased activity of the parieto-occipital and cerebellar areas compared with HC and a reduced basal ganglia activity when compared with PD-noFoG patients. Within the PD-FoG group, patients with more severe FoG scores showed a decreased recruitment of fronto-parietal areas relative to less severe cases. fMRI modifications correlated with FoG severity and with executive-attentive and visuospatial deficits in PD-FoG patients. This study revealed the presence of two different patterns of brain activity during a foot movement task in PD-FoG and PD-noFoG patients, suggesting a possible compensatory role of parieto-occipital networks to overcome the fronto-striatal failure in PD-FoG cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Agosta F, Gatti R, Sarasso E, Volonte MA, Canu E, Meani A, Sarro L, Copetti M, Cattrysse E, Kerckhofs E, Comi G, Falini A, Filippi M (2017) Brain plasticity in Parkinson's disease with freezing of gait induced by action observation training. J Neurol 264:88–101

    PubMed  Google Scholar 

  2. Amboni M, Cozzolino A, Longo K, Picillo M, Barone P (2008) Freezing of gait and executive functions in patients with Parkinson's disease. Mov Disord 23:395–400

    PubMed  Google Scholar 

  3. Barbe MT, Amarell M, Snijders AH, Florin E, Quatuor E-L, Schönau E, Fink GR, Bloem BR, Timmermann L (2014) Gait and upper limb variability in Parkinson’s disease patients with and without freezing of gait. J Neurol 261:330–342

    PubMed  Google Scholar 

  4. Bartels AL, Leenders KL (2008) Brain imaging in patients with freezing of gait. Mov Disord 23(Suppl 2):S461–467

    PubMed  Google Scholar 

  5. Beck AT, Ward C, Mendelson M, Mock J, Erbaugh J (1961) Beck depression inventory (BDI). Arch Gen Psychiatry 4:561–571

    CAS  Google Scholar 

  6. Beck EN, Ehgoetz Martens KA, Almeida QJ (2015) Freezing of gait in Parkinson's disease: an overload problem? PLoS One 10:e0144986

    PubMed  PubMed Central  Google Scholar 

  7. Bharti K, Suppa A, Pietracupa S, Upadhyay N, Gianni C, Leodori G, Di Biasio F, Modugno N, Petsas N, Grillea G, Zampogna A, Berardelli A, Pantano P (2019) Abnormal cerebellar connectivity patterns in patients with Parkinson's disease and freezing of gait. Cerebellum 18:298–308

    PubMed  Google Scholar 

  8. Blesa J, Trigo-Damas I, Dileone M, Del Rey NL, Hernandez LF, Obeso JA (2017) Compensatory mechanisms in Parkinson's disease: circuits adaptations and role in disease modification. Exp Neurol 298:148–161

    CAS  PubMed  Google Scholar 

  9. Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318:121–134

    PubMed  Google Scholar 

  10. Caffarra P, Vezzadini G, Dieci F, Zonato F, Venneri A (2004) Modified Card Sorting Test: normative data. J Clin Exp Neuropsychol 26:246–250

    PubMed  Google Scholar 

  11. Caffarra P, Vezzadini G, Dieci F, Zonato F, Venneri A (2002) Rey-Osterrieth complex figure: normative values in an Italian population sample. Neurol Sci 22:443–447

    CAS  PubMed  Google Scholar 

  12. Canu E, Agosta F, Sarasso E, Volonte MA, Basaia S, Stojkovic T, Stefanova E, Comi G, Falini A, Kostic VS, Gatti R, Filippi M (2015) Brain structural and functional connectivity in Parkinson's disease with freezing of gait. Hum Brain Mapp 36:5064–5078

    PubMed  Google Scholar 

  13. Carlesimo GA, Caltagirone C, Gainotti G (1996) The mental deterioration battery: normative data, diagnostic reliability and qualitative analyses of cognitive impairment. The group for the standardization of the mental deterioration battery. Eur Neurol 36:378–384

    CAS  PubMed  Google Scholar 

  14. Cerasa A, Hagberg GE, Peppe A, Bianciardi M, Gioia MC, Costa A, Castriota-Scanderbeg A, Caltagirone C, Sabatini U (2006) Functional changes in the activity of cerebellum and frontostriatal regions during externally and internally timed movement in Parkinson's disease. Brain Res Bull 71:259–269

    PubMed  Google Scholar 

  15. De Renzi A, Vignolo LA (1962) Token test: A sensitive test to detect receptive disturbances in aphasics. Brain 85:665–678

    Google Scholar 

  16. Dobkin BH, Firestine A, West M, Saremi K, Woods R (2004) Ankle dorsiflexion as an fMRI paradigm to assay motor control for walking during rehabilitation. NeuroImage 23:370–381

    PubMed  PubMed Central  Google Scholar 

  17. Drucker JH, Sathian K, Crosson B, Krishnamurthy V, McGregor KM, Bozzorg A, Gopinath K, Krishnamurthy LC, Wolf SL, Hart AR, Evatt M, Corcos DM, Hackney ME (2019) Internally guided lower limb movement recruits compensatory cerebellar activity in people with Parkinson's disease. Front Neurol 10:537

    PubMed  PubMed Central  Google Scholar 

  18. Ehgoetz Martens KA, Lukasik EL, Georgiades MJ, Gilat M, Hall JM, Walton CC, Lewis SJ (2018) Predicting the onset of freezing of gait: a longitudinal study. Mov Disord 33:128–135

    PubMed  Google Scholar 

  19. Fahn S (1995) The freezing phenomenon in parkinsonism. Adv Neurol 67:53–63

    CAS  PubMed  Google Scholar 

  20. Fahn S (1987) Members of the UPDRS Development Committee. Unified Parkinson's disease rating scale. Recent Dev Parkinson's Dis 2:293–304

    Google Scholar 

  21. Fasano A, Herman T, Tessitore A, Strafella AP, Bohnen NI (2015) Neuroimaging of freezing of gait. J Parkinsons Dis 5:241–254

    PubMed  PubMed Central  Google Scholar 

  22. Filippi M, Elisabetta S, Piramide N, Agosta F (2018) Functional MRI in idiopathic Parkinson's disease. Int Rev Neurobiol 141:439–467

    PubMed  Google Scholar 

  23. Filippi M, Sarasso E, Agosta F (2019) Resting-state functional MRI in Parkinsonian syndromes. Mov Disord Clin Pract 6:104–117

    PubMed  PubMed Central  Google Scholar 

  24. Fling BW, Cohen RG, Mancini M, Carpenter SD, Fair DA, Nutt JG, Horak FB (2014) Functional reorganization of the locomotor network in Parkinson patients with freezing of gait. PloS One 9:e100291

    PubMed  PubMed Central  Google Scholar 

  25. Folstein MF, Folstein SE, McHugh PR (1975) "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    CAS  PubMed  Google Scholar 

  26. Giladi N, Shabtai H, Simon ES, Biran S, Tal J, Korczyn AD (2000) Construction of freezing of gait questionnaire for patients with Parkinsonism. Parkinsonism Relat Disord 6:165–170

    CAS  PubMed  Google Scholar 

  27. Gilat M, Ehgoetz Martens KA, Miranda-Dominguez O, Arpan I, Shine JM, Mancini M, Fair DA, Lewis SJG, Horak FB (2018) Dysfunctional limbic circuitry underlying freezing of gait in Parkinson's disease. Neuroscience 374:119–132

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Giovagnoli AR, Del Pesce M, Mascheroni S, Simoncelli M, Laiacona M, Capitani E (1996) Trail making test: normative values from 287 normal adult controls. Ital J Neurol Sci 17:305–309

    CAS  PubMed  Google Scholar 

  29. Hoehn MM, Yahr MD (1998) Parkinsonism: onset, progression, and mortality. Neurology 50:B1–B16

    Google Scholar 

  30. Hou Y, Yang J, Luo C, Ou R, Song W, Liu W, Gong Q, Shang H (2016) Patterns of striatal functional connectivity differ in early and late onset Parkinson's disease. J Neurol 263:1993–2003

    CAS  PubMed  Google Scholar 

  31. Johnston M, de Morton N, Harding K, Taylor N (2013) Measuring mobility in patients living in the community with Parkinson disease. NeuroRehabilitation 32:957–966

    PubMed  Google Scholar 

  32. Lehericy S, Vaillancourt DE, Seppi K, Monchi O, Rektorova I, Antonini A, McKeown MJ, Masellis M, Berg D, Rowe JB, Lewis SJG, Williams-Gray CH, Tessitore A, Siebner HR, International P, Movement Disorder Society-Neuroimaging Study G (2017) The role of high-field magnetic resonance imaging in parkinsonian disorders: pushing the boundaries forward. Mov Disord 32:510–525

    PubMed  Google Scholar 

  33. Lewis SJ, Shine JM (2016) the next step: a common neural mechanism for freezing of gait. Neuroscientist 22:72–82

    PubMed  Google Scholar 

  34. Lieberman A (2006) Are freezing of gait (FOG) and panic related? J Neurol Sci 248:219–222

    PubMed  Google Scholar 

  35. Litvan I, Goldman JG, Troster AI, Schmand BA, Weintraub D, Petersen RC, Mollenhauer B, Adler CH, Marder K, Williams-Gray CH, Aarsland D, Kulisevsky J, Rodriguez-Oroz MC, Burn DJ, Barker RA, Emre M (2012) Diagnostic criteria for mild cognitive impairment in Parkinson's disease: movement Disorder Society Task Force guidelines. Mov Disord 27:349–356

    PubMed  PubMed Central  Google Scholar 

  36. Manos PJ (1999) Ten-point clock test sensitivity for Alzheimer's disease in patients with MMSE scores greater than 23. Int J Geriatr Psychiatry 14:454–458

    CAS  PubMed  Google Scholar 

  37. Martens KE, Hall JM, Gilat M, Georgiades MJ, Walton CC, Lewis S (2016) Anxiety is associated with freezing of gait and attentional set-shifting in Parkinson’s disease: a new perspective for early intervention. Gait Posture 49:431–436

    PubMed  Google Scholar 

  38. Martin JA, Zimmermann N, Scheef L, Jankowski J, Paus S, Schild HH, Klockgether T, Boecker H (2019) Disentangling motor planning and motor execution in unmedicated de novo Parkinson's disease patients: An fMRI study. NeuroImage Clin 22:101784

    PubMed  PubMed Central  Google Scholar 

  39. Mezzarobba S, Grassi M, Valentini R, Bernardis P (2018) Postural control deficit during Sit-To-Walk in patients with Parkinson’s disease and freezing of gait. Gait Posture 61:325–330

    PubMed  Google Scholar 

  40. Miceli G, Laudanna A, Burani C, Capasso R (1994) Batteria per l'Analisi del deficit Afasico. BADA. CEPSAG, Policlinico Gemelli, Università Cattolica del Sacro Cuore, Italy

    Google Scholar 

  41. Mioshi E, Dawson K, Mitchell J, Arnold R, Hodges JR (2006) The Addenbrooke's Cognitive Examination Revised (ACE-R): a brief cognitive test battery for dementia screening. Int J Geriatr Psychiatry 21:1078–1085

    PubMed  Google Scholar 

  42. Mirdamadi JL (2016) Cerebellar role in Parkinson's disease. J Neurophys 116:917–919

    Google Scholar 

  43. Miterko LN, Baker KB, Beckinghausen J, Bradnam LV, Cheng MY, Cooperrider J, DeLong MR, Gornati SV, Hallett M, Heck DH, Hoebeek FE, Kouzani AZ, Kuo SH, Louis ED, Machado A, Manto M, McCambridge AB, Nitsche MA, Taib NOB, Popa T, Tanaka M, Timmann D, Steinberg GK, Wang EH, Wichmann T, Xie T, Sillitoe RV (2019) Consensus paper: experimental neurostimulation of the cerebellum. Cerebellum 18:1064–1097

    PubMed  PubMed Central  Google Scholar 

  44. Monaco M, Costa A, Caltagirone C, Carlesimo GA (2013) Forward and backward span for verbal and visuo-spatial data: standardization and normative data from an Italian adult population. Neurol Sci 34:749–754

    PubMed  Google Scholar 

  45. Naismith SL, Shine JM, Lewis SJ (2010) The specific contributions of set-shifting to freezing of gait in Parkinson's disease. Mov Disord 25:1000–1004

    PubMed  Google Scholar 

  46. Naismith SL, Shine JM, Lewis SJ (2010) The specific contributions of set-shifting to freezing of gait in Parkinson's disease. Mov Disord 25:1000–1004

    PubMed  Google Scholar 

  47. Nocera JR, Stegemoller EL, Malaty IA, Okun MS, Marsiske M, Hass CJ, National Parkinson Foundation Quality Improvement Initiative I (2013) Using the Timed Up & Go test in a clinical setting to predict falling in Parkinson's disease. Arch Phys Med Rehabil 94:1300–1305

    PubMed  PubMed Central  Google Scholar 

  48. Novelli G, Papagno C, Capitani E, Laiacona M (1986) Tre test clinici di memoria verbale a lungo termine: Taratura su soggetti normali. Archivio di psicologia, neurologia e psichiatria 47:278–296

    Google Scholar 

  49. Nutt JG, Bloem BR, Giladi N, Hallett M, Horak FB, Nieuwboer A (2011) Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol 10:734–744

    PubMed  Google Scholar 

  50. Orsini A, Grossi D, Capitani E, Laiacona M, Papagno C, Vallar G (1987) Verbal and spatial immediate memory span: normative data from 1355 adults and 1112 children. Ital J Neurol Sci 8:539–548

    CAS  PubMed  Google Scholar 

  51. Peterson DS, Fling BW, Mancini M, Cohen RG, Nutt JG, Horak FB (2015) Dual-task interference and brain structural connectivity in people with Parkinson's disease who freeze. J Neurol Neurosurg Psychiatry 86:786–792

    PubMed  Google Scholar 

  52. Peto V, Jenkinson C, Fitzpatrick R, Greenhall R (1995) The development and validation of a short measure of functioning and well being for individuals with Parkinson's disease. Qual Life Res 4:241–248

    CAS  PubMed  Google Scholar 

  53. Prasad S, Saini J, Yadav R, Pal PK (2018) Motor asymmetry and neuromelanin imaging: Concordance in Parkinson's disease. Parkinsonism Relat Disord 53:28–32

    PubMed  Google Scholar 

  54. Redgrave P, Rodriguez M, Smith Y, Rodriguez-Oroz MC, Lehericy S, Bergman H, Agid Y, DeLong MR, Obeso JA (2010) Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease. Nat Rev Neurosci 11:760–772

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Rochester L, Burn DJ, Woods G, Godwin J, Nieuwboer A (2009) Does auditory rhythmical cueing improve gait in people with Parkinson's disease and cognitive impairment? A feasibility study. Mov Disord 24:839–845

    PubMed  Google Scholar 

  56. Sahyoun C, Floyer-Lea A, Johansen-Berg H, Matthews PM (2004) Towards an understanding of gait control: brain activation during the anticipation, preparation and execution of foot movements. NeuroImage 21:568–575

    CAS  PubMed  Google Scholar 

  57. Sen S, Kawaguchi A, Truong Y, Lewis MM, Huang X (2010) Dynamic changes in cerebello-thalamo-cortical motor circuitry during progression of Parkinson's disease. Neuroscience 166:712–719

    CAS  PubMed  Google Scholar 

  58. Shine JM, Matar E, Ward PB, Bolitho SJ, Gilat M, Pearson M, Naismith SL, Lewis SJ (2013) Exploring the cortical and subcortical functional magnetic resonance imaging changes associated with freezing in Parkinson's disease. Brain 136:1204–1215

    PubMed  Google Scholar 

  59. Shine JM, Matar E, Ward PB, Frank MJ, Moustafa AA, Pearson M, Naismith SL, Lewis SJG (2013) Freezing of gait in Parkinson’s disease is associated with functional decoupling between the cognitive control network and the basal ganglia. Brain 136:3671–3681

    PubMed  Google Scholar 

  60. Shine JM, Moustafa AA, Matar E, Frank MJ, Lewis SJ (2013) The role of frontostriatal impairment in freezing of gait in Parkinson's disease. Front Syst Neurosci 7:61

    PubMed  PubMed Central  Google Scholar 

  61. Shine JM, Naismith SL, Lewis SJG (2011) The pathophysiological mechanisms underlying freezing of gait in Parkinson's Disease. J Clin Neurosci 18:1154–1157

    CAS  PubMed  Google Scholar 

  62. Spinnler HGT (1987) Standardizzazione e taratura italiana di test neuropsicologici. Masson Italia Periodici, Milano

    Google Scholar 

  63. Tessitore A, Amboni M, Esposito F, Russo A, Picillo M, Marcuccio L, Pellecchia MT, Vitale C, Cirillo M, Tedeschi G (2012) Resting-state brain connectivity in patients with Parkinson's disease and freezing of gait. Parkinsonism Relat Disord 18:781–787

    PubMed  Google Scholar 

  64. Wang M, Jiang S, Yuan Y, Zhang L, Ding J, Wang J, Zhang J, Zhang K, Wang J (2016) Alterations of functional and structural connectivity of freezing of gait in Parkinson's disease. J Neurol 263:1583–1592

    CAS  PubMed  Google Scholar 

  65. Weiss A, Herman T, Giladi N, Hausdorff JM (2015) New evidence for gait abnormalities among Parkinson’s disease patients who suffer from freezing of gait: insights using a body-fixed sensor worn for 3 days. J Neural Transm 122:403–410

    PubMed  Google Scholar 

  66. Worsley KJ, Friston KJ (1995) Analysis of fMRI time-series revisited—again. NeuroImage 2:173–181

    CAS  PubMed  Google Scholar 

  67. Wu T, Hallett M (2013) The cerebellum in Parkinson’s disease. Brain 136:696–709

    PubMed  Google Scholar 

  68. Yu H, Sternad D, Corcos DM, Vaillancourt DE (2007) Role of hyperactive cerebellum and motor cortex in Parkinson's disease. NeuroImage 35:222–233

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the patients and their families for the time and effort they dedicated to the research.

Funding

This study was partially supported by the Jacques and Gloria Gossweiler Foundation. The funding source had no role in the conduct of the research and/or preparation of the article.

Author information

Authors and Affiliations

Authors

Contributions

NP and FA helped in study concept/design, analysis/interpretation of data and drafting the manuscript for content. ES, EC and MAV contributed to acquisition of data, analysis/interpretation of data and revising the manuscript for content. MF helped in study concept/design, interpretation of data, revising the manuscript for content, study supervision and coordination and obtaining funding.

Corresponding author

Correspondence to Massimo Filippi.

Ethics declarations

Conflicts of interest

N. Piramide, E. Sarasso and M.A. Volontè report no disclosures. F. Agosta is Section Editor of NeuroImage: Clinical; has received speaker honoraria from Biogen Idec, Novartis and Philips and receives research supports from the Italian Ministry of Health, AriSLA (Fondazione Italiana di Ricerca per la SLA), and the European Research Council. M. Filippi is Editor-in-Chief of the Journal of Neurology, received compensation for consulting services and/or speaking activities from Biogen Idec, Merck-Serono, Novartis, Teva Pharmaceutical Industries and receives research support from Biogen Idec, Merck-Serono, Novartis, Teva Pharmaceutical Industries, Roche, Italian Ministry of Health, Fondazione Italiana Sclerosi Multipla and ARiSLA (Fondazione Italiana di Ricerca per la SLA).

Ethical standards

This study was approved by the Local Ethical Committees on human studies and has therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. All subjects’ parents provided written informed consent prior to study participation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piramide, N., Agosta, F., Sarasso, E. et al. Brain activity during lower limb movements in Parkinson’s disease patients with and without freezing of gait. J Neurol 267, 1116–1126 (2020). https://doi.org/10.1007/s00415-019-09687-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-019-09687-1

Keywords

Navigation