Skip to main content

Advertisement

Log in

Diffuse axonal injury in mild traumatic brain injury: a 3D multivoxel proton MR spectroscopy study

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Since mild traumatic brain injury (mTBI) often leads to neurological symptoms even without clinical MRI findings, our goal was to test whether diffuse axonal injury is quantifiable with multivoxel proton MR spectroscopic imaging (1H-MRSI). T1- and T2-weighted MRI images and three-dimensional 1H-MRSI (480 voxels over 360 cm3, about 30 % of the brain) were acquired at 3 T from 26 mTBI patients (mean Glasgow Coma Scale score 14.7, 18–56 years old, 3–55 days after injury) and 13 healthy matched contemporaries as controls. The N-acetylaspartate (NAA), choline (Cho), creatine (Cr) and myo-inositol (mI) concentrations and gray-matter/white-matter (GM/WM) and cerebrospinal fluid fractions were obtained in each voxel. Global GM and WM absolute metabolic concentrations were estimated using linear regression, and patients were compared with controls using two-way analysis of variance. In patients, mean NAA, Cr, Cho and mI concentrations in GM (8.4 ± 0.7, 6.9 ± 0.6, 1.3 ± 0.2, 5.5 ± 0.6 mM) and Cr, Cho and mI in WM (4.8 ± 0.5, 1.4 ± 0.2, 4.6 ± 0.7 mM) were not different from the values in controls. The NAA concentrations in WM, however, were significantly lower in patients than in controls (7.2 ± 0.8 vs. 7.7 ± 0.6 mM, p = 0.0125). The Cho and Cr levels in WM of patients were positively correlated with time since mTBI. This 1H-MRSI approach allowed us to ascertain that early mTBI sequelae are (1) diffuse (not merely local), (2) neuronal (not glial), and (3) in the global WM (not GM). These findings support the hypothesis that, similar to more severe head trauma, mTBI also results in diffuse axonal injury, but that dysfunction rather than cell death dominates shortly after injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Faul M, Xu L, Wald M, Coronado V (2010) Traumatic brain injury in the United States: emergency department visits, hospitalizations and deaths, 2002–2006. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control, Atlanta

    Google Scholar 

  2. Zaloshnja E, Miller T, Langlois JA, Selassie AW (2008) Prevalence of long-term disability from traumatic brain injury in the civilian population of the United States, 2005. J Head Trauma Rehabil 23:394–400

    Article  PubMed  Google Scholar 

  3. Snell FI, Halter MJ (2010) A signature wound of war: mild traumatic brain injury. J Psychosoc Nurs Ment Health Serv 48:22–28

    Article  PubMed  Google Scholar 

  4. Tanelian T, Jaycox LH (2008) Invisible wounds of war report. RAND Corporation, Santa Monica, p 305

    Google Scholar 

  5. Teasdale G, Jennett B (1974) Assessment of coma and impaired consciousness. A practical scale. Lancet 2:81–84

    Article  PubMed  CAS  Google Scholar 

  6. MacGregor AJ, Shaffer RA, Dougherty AL, Galarneau MR, Raman R, Baker DG, Lindsay SP, Golomb BA, Corson KS (2010) Prevalence and psychological correlates of traumatic brain injury in operation Iraqi freedom. J Head Trauma Rehabil 25:1–8

    Article  PubMed  Google Scholar 

  7. Ruff R (2005) Two decades of advances in understanding of mild traumatic brain injury. J Head Trauma Rehabil 20:5–18

    Article  PubMed  Google Scholar 

  8. Buki A, Povlishock JT (2006) All roads lead to disconnection? – traumatic axonal injury revisited. Acta Neurochir (Wien) 148:181–193 (discussion 193–184)

    Article  CAS  Google Scholar 

  9. Iverson GL (2005) Outcome from mild traumatic brain injury. Curr Opin Psychiatry 18:301–317

    Article  PubMed  Google Scholar 

  10. Inglese M, Bomsztyk E, Gonen O, Mannon LJ, Grossman RI, Rusinek H (2005) Dilated perivascular spaces: hallmarks of mild traumatic brain injury. AJNR Am J Neuroradiol 26:719–724

    PubMed  Google Scholar 

  11. Bigler ED (2010) Neuroimaging in mild traumatic brain injury. Psychol Injury Law 3(1):36–49

    Article  Google Scholar 

  12. Wilson JT, Wiedmann KD, Hadley DM, Condon B, Teasdale G, Brooks DN (1988) Early and late magnetic resonance imaging and neuropsychological outcome after head injury. J Neurol Neurosurg Psychiatry 51:391–396

    Article  PubMed  CAS  Google Scholar 

  13. Niogi SN, Mukherjee P (2010) Diffusion tensor imaging of mild traumatic brain injury. J Head Trauma Rehabil 25:241–255

    Article  PubMed  Google Scholar 

  14. Mayer AR, Mannell MV, Ling J, Gasparovic C, Yeo RA (2011) Functional connectivity in mild traumatic brain injury. Hum Brain Mapp 32(11):1825–1835

    Article  PubMed  Google Scholar 

  15. Marino S, Ciurleo R, Bramanti P, Federico A, De Stefano N (2010) 1H-MR spectroscopy in traumatic brain injury. Neurocrit Care 14:127–133

    Article  Google Scholar 

  16. Gasparovic C, Yeo R, Mannell M, Ling J, Elgie R, Phillips J, Doezema D, Mayer A (2009) Neurometabolite concentrations in gray and white matter in mild traumatic brain injury: a 1H magnetic resonance spectroscopy study. J Neurotrauma 26(10):1635–1643

    Article  PubMed  Google Scholar 

  17. Yeo RA, Gasparovic C, Merideth F, Ruhl D, Doezema D, Mayer AR (2011) A longitudinal proton magnetic resonance spectroscopy study of mild traumatic brain injury. J Neurotrauma 28:1–11

    Article  PubMed  Google Scholar 

  18. Kirov II, George IC, Jayawickrama N, Babb JS, Perry NN, Gonen O (2012) Longitudinal inter- and intra-individual human brain metabolic quantification over 3 years with proton MR spectroscopy at 3 T. Magn Reson Med 67:27–33

    Article  PubMed  Google Scholar 

  19. Tal A, Kirov II, Grossman RI, Gonen O (2012) The role of gray and white matter segmentation in quantitative proton MR spectroscopic imaging. NMR Biomed. doi:10.1002/nbm.2812

  20. Kreis R, Slotboom J, Hofmann L, Boesch C (2005) Integrated data acquisition and processing to determine metabolite contents, relaxation times, and macromolecule baseline in single examinations of individual subjects. Magn Reson Med 54:761–768

    Article  PubMed  CAS  Google Scholar 

  21. Hu J, Javaid T, Arias-Mendoza F, Liu Z, McNamara R, Brown TR (1995) A fast, reliable, automatic shimming procedure using 1H chemical-shift-imaging spectroscopy. J Magn Reson B 108:213–219

    Article  PubMed  CAS  Google Scholar 

  22. Goelman G, Liu S, Hess D, Gonen O (2006) Optimizing the efficiency of high-field multivoxel spectroscopic imaging by multiplexing in space and time. Magn Reson Med 56:34–40

    Article  PubMed  CAS  Google Scholar 

  23. Ashburner J, Friston K (1997) Multimodal image coregistration and partitioning – a unified framework. Neuroimage 6:209–217

    Article  PubMed  CAS  Google Scholar 

  24. Soher BJ, Young K, Govindaraju V, Maudsley AA (1998) Automated spectral analysis III: application to in vivo proton MR spectroscopy and spectroscopic imaging. Magn Reson Med 40:822–831

    Article  PubMed  CAS  Google Scholar 

  25. Traber F, Block W, Lamerichs R, Gieseke J, Schild HH (2004) 1H metabolite relaxation times at 3.0 tesla: measurements of T1 and T2 values in normal brain and determination of regional differences in transverse relaxation. J Magn Reson Imaging 19:537–545

    Article  PubMed  Google Scholar 

  26. Kirov II, Fleysher L, Fleysher R, Patil V, Liu S, Gonen O (2008) Age dependence of regional proton metabolites T2 relaxation times in the human brain at 3 T. Magn Reson Med 60:790–795

    Article  PubMed  CAS  Google Scholar 

  27. Posse S, Otazo R, Caprihan A, Bustillo J, Chen H, Henry PG, Marjanska M, Gasparovic C, Zuo C, Magnotta V, Mueller B, Mullins P, Renshaw P, Ugurbil K, Lim KO, Alger JR (2007) Proton echo-planar spectroscopic imaging of J-coupled resonances in human brain at 3 and 4 Tesla. Magn Reson Med 58(2):236–244

    Article  PubMed  CAS  Google Scholar 

  28. Cecil KM, Hills EC, Sandel ME, Smith DH, McIntosh TK, Mannon LJ, Sinson GP, Bagley LJ, Grossman RI, Lenkinski RE (1998) Proton magnetic resonance spectroscopy for detection of axonal injury in the splenium of the corpus callosum of brain-injured patients. J Neurosurg 88:795–801

    Article  PubMed  CAS  Google Scholar 

  29. Govindaraju V, Gauger GE, Manley GT, Ebel A, Meeker M, Maudsley AA (2004) Volumetric proton spectroscopic imaging of mild traumatic brain injury. AJNR Am J Neuroradiol 25:730–737

    PubMed  Google Scholar 

  30. Govind V, Gold S, Kaliannan K, Saigal G, Falcone S, Arheart KL, Harris L, Jagid J, Maudsley AA (2010) Whole-brain proton MR spectroscopic imaging of mild-to-moderate traumatic brain injury and correlation with neuropsychological deficits. J Neurotrauma 27:483–496

    Article  PubMed  Google Scholar 

  31. Garnett MR, Blamire AM, Rajagopalan B, Styles P, Cadoux-Hudson TA (2000) Evidence for cellular damage in normal-appearing white matter correlates with injury severity in patients following traumatic brain injury: a magnetic resonance spectroscopy study. Brain 123:1403–1409

    Article  PubMed  Google Scholar 

  32. Vagnozzi R, Signoretti S, Tavazzi B, Floris R, Ludovici A, Marziali S, Tarascio G, Amorini AM, Di Pietro V, Delfini R, Lazzarino G (2008) Temporal window of metabolic brain vulnerability to concussion: a pilot 1H-magnetic resonance spectroscopic study in concussed athletes – part III. Neurosurgery 62:1286–1295 (discussion 1295–1296)

    Article  PubMed  Google Scholar 

  33. Vagnozzi R, Signoretti S, Cristofori L, Alessandrini F, Floris R, Isgro E, Ria A, Marziale S, Zoccatelli G, Tavazzi B, Del Bolgia F, Sorge R, Broglio SP, McIntosh TK, Lazzarino G (2010) Assessment of metabolic brain damage and recovery following mild traumatic brain injury: a multicentre, proton magnetic resonance spectroscopic study in concussed patients. Brain 133:3232–3242

    Article  PubMed  Google Scholar 

  34. Son BC, Park CK, Choi BG, Kim EN, Choe BY, Lee KS, Kim MC, Kang JK (2000) Metabolic changes in pericontusional oedematous areas in mild head injury evaluated by 1H MRS. Acta Neurochir 76:13–16

    CAS  Google Scholar 

  35. Nakabayashi M, Suzaki S, Tomita H (2007) Neural injury and recovery near cortical contusions: a clinical magnetic resonance spectroscopy study. J Neurosurg 106:370–377

    Article  PubMed  Google Scholar 

  36. Kirov I, Fleysher L, Babb JS, Silver JM, Grossman RI, Gonen O (2007) Characterizing ‘mild’ in traumatic brain injury with proton MR spectroscopy in the thalamus: initial findings. Brain Inj 21:1147–1154

    Article  PubMed  Google Scholar 

  37. Farkas O, Povlishock JT (2007) Cellular and subcellular change evoked by diffuse traumatic brain injury: a complex web of change extending far beyond focal damage. Prog Brain Res 161:43–59

    Article  PubMed  CAS  Google Scholar 

  38. Graham DI, McIntosh TK, Maxwell WL, Nicoll JA (2000) Recent advances in neurotrauma. J Neuropathol Exp Neurol 59:641–651

    PubMed  CAS  Google Scholar 

  39. Biasca N, Maxwell WL (2007) Minor traumatic brain injury in sports: a review in order to prevent neurological sequelae. Prog Brain Res 161:263–291

    Article  PubMed  Google Scholar 

  40. Kraus MF, Susmaras T, Caughlin BP, Walker CJ, Sweeney JA, Little DM (2007) White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain 130:2508–2519

    Article  PubMed  Google Scholar 

  41. Frahm J, Hanefeld F (1997) Localized proton magnetic spectroscopy of brain disorders in childhood. In: Bachelard HS (ed) Magnetic resonance spectroscopy and imaging in neurochemistry. Plenum Press, New York, pp 329–402

    Chapter  Google Scholar 

  42. Di Giovanni S, Movsesyan V, Ahmed F, Cernak I, Schinelli S, Stoica B, Faden AI (2005) Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc Natl Acad Sci U S A 102:8333–8338

    Article  PubMed  Google Scholar 

  43. Friedman SD, Brooks WM, Jung RE, Chiulli SJ, Sloan JH, Montoya BT, Hart BL, Yeo RA (1999) Quantitative proton MRS predicts outcome after traumatic brain injury. Neurology 52:1384–1391

    Article  PubMed  CAS  Google Scholar 

  44. Stein SC, Ross SE (1992) Mild head injury: a plea for routine early CT scanning. J Trauma 33:11–13

    Article  PubMed  CAS  Google Scholar 

  45. Borg J, Holm L, Cassidy JD, Peloso PM, Carroll LJ, von Holst H, Ericson K (2004) Diagnostic procedures in mild traumatic brain injury: results of the WHO collaborating centre task force on mild traumatic brain injury. J Rehabil Med (43 Suppl):61–75

    Google Scholar 

  46. Culotta VP, Sementilli ME, Gerold K, Watts CC (1996) Clinicopathological heterogeneity in the classification of mild head injury. Neurosurgery 38:245–250

    Article  PubMed  CAS  Google Scholar 

  47. Johnson VE, Stewart W, Smith DH (2012) Axonal pathology in traumatic brain injury. Exp Neurol (in press)

  48. Baker EH, Basso G, Barker PB, Smith MA, Bonekamp D, Horska A (2008) Regional apparent metabolite concentrations in young adult brain measured by (1)H MR spectroscopy at 3 Tesla. J Magn Reson Imaging 27:489–499

    Article  PubMed  Google Scholar 

  49. Ge Y, Grossman RI, Babb JS, Rabin ML, Mannon LJ, Kolson DL (2002) Age-related total gray matter and white matter changes in normal adult brain. Part I: volumetric MR imaging analysis. AJNR Am J Neuroradiol 23:1327–1333

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grants EB01015, NS39135, NS29029 and NS050520. Assaf Tal is also supported by the Human Frontiers Science Project. We thank Ms. Nissa Perry and Mr. Joseph Reaume for subject recruitment.

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical standard

This work has been approved by the appropriate ethics committee and therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oded Gonen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirov, I.I., Tal, A., Babb, J.S. et al. Diffuse axonal injury in mild traumatic brain injury: a 3D multivoxel proton MR spectroscopy study. J Neurol 260, 242–252 (2013). https://doi.org/10.1007/s00415-012-6626-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-012-6626-z

Keywords

Navigation