Skip to main content
Log in

Nuclear transport is becoming crystal clear

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Akey CW, Radermacher M, Yang Q, Rout MP (1993) Architecture of the Xenopus nuclear pore complex revealed by three-dimensional cryo-electron microscopy. Three-dimensional architecture of the isolated yeast nuclear pore complex: functional and evolutionary implications. J Cell Biol 122:1–19

    Article  PubMed  CAS  Google Scholar 

  • Andrade MA, Bork P (1995) HEAT repeats in the Huntington’s disease protein. Nat Genet 11:115–116

    Article  PubMed  CAS  Google Scholar 

  • Bayliss R, Littlewood T, Stewart M (2000) Structural basis for the interaction between FxFG nucleoporin repeats and importin-beta in nuclear trafficking. Cell 102:99–108

    Article  PubMed  CAS  Google Scholar 

  • Bayliss R, Leung SW, Baker RP, Quimby BB, Corbett AH, Stewart M (2002a) Structural basis for the interaction between NTF2 and nucleoporin FxFG repeats. EMBO J 21:2843–2853

    Article  PubMed  CAS  Google Scholar 

  • Bayliss R, Littlewood T, Strawn LA, Wente SR, Stewart M (2002b) GLFG and FxFG nucleoporins bind to overlapping sites on importin-beta. J Biol Chem 277:50597–50606

    Article  PubMed  CAS  Google Scholar 

  • Beck M, Forster F, Ecke M, Plitzko JM, Melchior F, Gerisch G, Baumeister W, Medalia O (2004) Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306:1387–1390

    Article  PubMed  CAS  Google Scholar 

  • Bednenko J, Cingolani G, Gerace L (2003) Importin beta contains a COOH-terminal nucleoporin binding region important for nuclear transport. J Cell Biol 162:391–401

    Article  PubMed  CAS  Google Scholar 

  • Belgareh N, Rabut G, Bai SW, van Overbeek M, Beaudouin J, Daigle N, Zatsepina OV, Pasteau F, Labas V, Fromont-Racine M, Ellenberg J, Doye V (2001) An evolutionarily conserved NPC subcomplex, which redistributes in part to kinetochores in mammalian cells. J Cell Biol 154:1147–1160

    Article  PubMed  CAS  Google Scholar 

  • Berke IC, Boehmer T, Blobel G, Schwartz TU (2004) Structural and functional analysis of Nup133 domains reveals modular building blocks of the nuclear pore complex. J Cell Biol 167:591–597

    Article  PubMed  CAS  Google Scholar 

  • Bischoff FR, Krebber H, Smirnova E, Dong W, Ponstingl H (1995) Co-activation of RanGTPase and inhibition of GTP dissociation by Ran-GTP binding protein RanBP1. EMBO J 14:705–715

    PubMed  CAS  Google Scholar 

  • Boehmer T, Enninga J, Dales S, Blobel G, Zhong H (2003) Depletion of a single nucleoporin, Nup107, prevents the assembly of a subset of nucleoporins into the nuclear pore complex. Proc Natl Acad Sci U S A 100:981–985

    Article  PubMed  CAS  Google Scholar 

  • Bullock TL, Clarkson WD, Kent HM, Stewart M (1996) The 1.6 angstroms resolution crystal structure of nuclear transport factor 2 (NTF2). J Mol Biol 260:422–431

    Article  PubMed  CAS  Google Scholar 

  • Catimel B, Teh T, Fontes MR, Jennings IG, Jans DA, Howlett GJ, Nice EC, Kobe B (2001) Biophysical characterization of interactions involving importin-alpha during nuclear import. J Biol Chem 276:34189–34198

    Article  PubMed  CAS  Google Scholar 

  • Chaillan-Huntington C, Butler PJ, Huntington JA, Akin D, Feldherr C, Stewart M (2001) NTF2 monomer–dimer equilibrium. J Mol Biol 314:465–477

    Article  PubMed  CAS  Google Scholar 

  • Chen MH, Ben-Efraim I, Mitrousis G, Walker-Kopp N, Sims PJ, Cingolani G (2005) Phospholipid scramblase 1 contains a nonclassical nuclear localization signal with unique binding site in importin alpha. J Biol Chem 280:10599–10606

    Article  PubMed  CAS  Google Scholar 

  • Chi NC, Adam EJ, Adam SA (1997) Different binding domains for Ran-GTP and Ran-GDP/RanBP1 on nuclear import factor p97. J Biol Chem 272:6818–6822

    Article  PubMed  CAS  Google Scholar 

  • Chook YM, Blobel G (1999) Structure of the nuclear transport complex karyopherin-beta2-Ran × GppNHp. Nature 399:230–237

    Article  PubMed  CAS  Google Scholar 

  • Cingolani G, Petosa C, Weis K, Muller CW (1999) Structure of importin-beta bound to the IBB domain of importin-alpha. Nature 399:221–229

    Article  PubMed  CAS  Google Scholar 

  • Cingolani G, Bednenko J, Gillespie MT, Gerace L (2002) Molecular basis for the recognition of a nonclassical nuclear localization signal by importin beta. Mol Cell 10:1345–1353

    Article  PubMed  CAS  Google Scholar 

  • Conti E, Kuriyan J (2000) Crystallographic analysis of the specific yet versatile recognition of distinct nuclear localization signals by karyopherin alpha. Structure Fold Des 8:329–338

    Article  PubMed  CAS  Google Scholar 

  • Conti E, Uy M, Leighton L, Blobel G, Kuriyan J (1998) Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha. Cell 94:193–204

    Article  PubMed  CAS  Google Scholar 

  • Cook A, Fernandez E, Lindner D, Ebert J, Schlenstedt G, Conti E (2005) The structure of the nuclear export receptor Cse1 in its cytosolic state reveals a closed conformation incompatible with cargo binding. Mol Cell 18:355–367

    Article  PubMed  CAS  Google Scholar 

  • Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ (2002) Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol 158:915–927

    Article  PubMed  CAS  Google Scholar 

  • Del Priore V, Heath C, Snay C, MacMillan A, Gorsch L, Dagher S, Cole C (1997) A structure/function analysis of Rat7p/Nup159p, an essential nucleoporin of Saccharomyces cerevisiae. J Cell Sci 110(Pt 23):2987–2999

    PubMed  Google Scholar 

  • Denning DP, Uversky V, Patel SS, Fink AL, Rexach M (2002) The Saccharomyces cerevisiae nucleoporin Nup2p is a natively unfolded protein. J Biol Chem 277:33447–33455

    Article  PubMed  CAS  Google Scholar 

  • Denning DP, Patel SS, Uversky V, Fink AL, Rexach M (2003) Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc Natl Acad Sci U S A 100:2450–2455

    Article  PubMed  CAS  Google Scholar 

  • Devos D, Dokudovskaya S, Alber F, Williams R, Chait BT, Sali A, Rout MP (2004) Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol 2:e380

    Article  PubMed  Google Scholar 

  • Fontes MR, Teh T, Kobe B (2000) Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-alpha. J Mol Biol 297:1183–1194

    Article  PubMed  CAS  Google Scholar 

  • Fontes MR, Teh T, Jans D, Brinkworth RI, Kobe B (2003) Structural basis for the specificity of bipartite nuclear localization sequence binding by importin-alpha. J Biol Chem 278:27981–27987

    Article  PubMed  CAS  Google Scholar 

  • Fontoura BM, Blobel G, Matunis MJ (1999) A conserved biogenesis pathway for nucleoporins: proteolytic processing of a 186-kilodalton precursor generates Nup98 and the novel nucleoporin, Nup96. J Cell Biol 144:1097–1112

    Article  PubMed  CAS  Google Scholar 

  • Fribourg S, Braun IC, Izaurralde E, Conti E (2001) Structural basis for the recognition of a nucleoporin FG repeat by the NTF2-like domain of the TAP/p15 mRNA nuclear export factor. Mol Cell 8:645–656

    Article  PubMed  CAS  Google Scholar 

  • Gorsch LC, Dockendorff TC, Cole CN (1995) A conditional allele of the novel repeat-containing yeast nucleoporin RAT7/NUP159 causes both rapid cessation of mRNA export and reversible clustering of nuclear pore complexes. J Cell Biol 129:939–955

    Article  PubMed  CAS  Google Scholar 

  • Grant RP, Neuhaus D, Stewart M (2003) Structural basis for the interaction between the Tap/NXF1 UBA domain and FG nucleoporins at 1A resolution. J Mol Biol 326:849–858

    Article  PubMed  CAS  Google Scholar 

  • Harel A, Orjalo AV, Vincent T, Lachish-Zalait A, Vasu S, Shah S, Zimmerman E, Elbaum M, Forbes DJ (2003) Removal of a single pore subcomplex results in vertebrate nuclei devoid of nuclear pores. Mol Cell 11:853–864

    Article  PubMed  CAS  Google Scholar 

  • Hillig RC, Renault L, Vetter IR, Drell TT, Wittinghofer A, Becker J (1999) The crystal structure of rna1p: a new fold for a GTPase-activating protein. Mol Cell 3:781–791

    Article  PubMed  CAS  Google Scholar 

  • Hinshaw JE, Carragher BO, Milligan RA, Akey CW, Radermacher M, Yang Q, Rout MP (1992) Architecture and design of the nuclear pore complex. Architecture of the Xenopus nuclear pore complex revealed by three-dimensional cryo-electron microscopy. Three-dimensional architecture of the isolated yeast nuclear pore complex: functional and evolutionary implications. Cell 69:1133–1141

    Article  PubMed  CAS  Google Scholar 

  • Hodel AE, Hodel MR, Griffis ER, Hennig KA, Ratner GA, Xu S, Powers MA (2002) The three-dimensional structure of the autoproteolytic, nuclear pore-targeting domain of the human nucleoporin Nup98. Mol Cell 10:347–358

    Article  PubMed  CAS  Google Scholar 

  • Hodge CA, Colot HV, Stafford P, Cole CN (1999) Rat8p/Dbp5p is a shuttling transport factor that interacts with Rat7p/Nup159p and Gle1p and suppresses the mRNA export defect of xpo1-1 cells. EMBO J 18:5778–5788

    Article  PubMed  CAS  Google Scholar 

  • Hopper AK, Traglia HM, Dunst RW (1990) The yeast RNA1 gene product necessary for RNA processing is located in the cytosol and apparently excluded from the nucleus. J Cell Biol 111:309–321

    Article  PubMed  CAS  Google Scholar 

  • Klebe C, Prinz H, Wittinghofer A, Goody RS (1995) The kinetic mechanism of Ran–nucleotide exchange catalyzed by RCC1. Biochemistry 34:12543–12552

    Article  PubMed  CAS  Google Scholar 

  • Kobe B (1999) Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin alpha. Nat Struct Biol 6:388–397

    Article  PubMed  CAS  Google Scholar 

  • Kose S, Imamoto N, Tachibana T, Shimamoto T, Yoneda Y (1997) Ran-unassisted nuclear migration of a 97-kD component of nuclear pore-targeting complex. J Cell Biol 139:841–849

    Article  PubMed  CAS  Google Scholar 

  • Kutay U, Izaurralde E, Bischoff FR, Mattaj IW, Gorlich D (1997) Dominant-negative mutants of importin-beta block multiple pathways of import and export through the nuclear pore complex. EMBO J 16:1153–1163

    Article  PubMed  CAS  Google Scholar 

  • Lam MH, Briggs LJ, Hu W, Martin TJ, Gillespie MT, Jans DA (1999) Importin beta recognizes parathyroid hormone-related protein with high affinity and mediates its nuclear import in the absence of importin alpha. J Biol Chem 274:7391–7398

    Article  PubMed  CAS  Google Scholar 

  • Lee A, Tam R, Belhumeur P, DiPaolo T, Clark MW (1993) Prp20, the Saccharomyces cerevisiae homolog of the regulator of chromosome condensation, RCC1, interacts with double-stranded DNA through a multi-component complex containing GTP-binding proteins. J Cell Sci 106(Pt 1):287–298

    PubMed  CAS  Google Scholar 

  • Lee SJ, Imamoto N, Sakai H, Nakagawa A, Kose S, Koike M, Yamamoto M, Kumasaka T, Yoneda Y, Tsukihara T (2000) The adoption of a twisted structure of importin-beta is essential for the protein–protein interaction required for nuclear transport. J Mol Biol 302:251–264

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, Sekimoto T, Yamashita E, Nagoshi E, Nakagawa A, Imamoto N, Yoshimura M, Sakai H, Chong KT, Tsukihara T, Yoneda Y (2003) The structure of importin-beta bound to SREBP-2: nuclear import of a transcription factor. Science 302:1571–1575

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, Matsuura Y, Liu SM, Stewart M (2005) Structural basis for nuclear import complex dissociation by RanGTP. Nature 435:693–696

    Article  PubMed  CAS  Google Scholar 

  • Liu SM, Stewart M (2005) Structural basis for the high-affinity binding of nucleoporin Nup1p to the Saccharomyces cerevisiae importin-beta homologue, Kap95p. J Mol Biol 349:515–525

    Article  PubMed  CAS  Google Scholar 

  • Lutzmann M, Kunze R, Buerer A, Aebi U, Hurt E (2002) Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins. EMBO J 21:387–397

    Article  PubMed  CAS  Google Scholar 

  • Macara IG (2001) Transport into and out of the nucleus. Microbiol Mol Biol Rev 65:570–594, table of contents

    Article  PubMed  CAS  Google Scholar 

  • Matsuura Y, Stewart M (2004) Structural basis for the assembly of a nuclear export complex. Nature 432:872–877

    Article  PubMed  CAS  Google Scholar 

  • Matsuura Y, Lange A, Harreman MT, Corbett AH, Stewart M (2003) Structural basis for Nup2p function in cargo release and karyopherin recycling in nuclear import. EMBO J 22:5358–5369

    Article  PubMed  CAS  Google Scholar 

  • Mattaj IW, Englmeier L (1998) Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 67:265–306

    Article  PubMed  CAS  Google Scholar 

  • Matunis MJ, Wu J, Blobel G (1998) SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J Cell Biol 140:499–509

    Article  PubMed  CAS  Google Scholar 

  • Milburn MV, Tong L, deVos AM, Brunger A, Yamaizumi Z, Nishimura S, Kim SH (1990) Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247:939–945

    Article  PubMed  CAS  Google Scholar 

  • Nagoshi E, Imamoto N, Sato R, Yoneda Y (1999) Nuclear import of sterol regulatory element-binding protein-2, a basic helix-loop-helix-leucine zipper (bHLH-Zip)-containing transcription factor, occurs through the direct interaction of importin beta with HLH-Zip. Mol Biol Cell 10:2221–2233

    PubMed  CAS  Google Scholar 

  • Nilsson J, Weis K, Kjems J (2002) The C-terminal extension of the small GTPase Ran is essential for defining the GDP-bound form. J Mol Biol 318:583–593

    Article  PubMed  CAS  Google Scholar 

  • Ohtsubo M, Okazaki H, Nishimoto T (1989) The RCC1 protein, a regulator for the onset of chromosome condensation locates in the nucleus and binds to DNA. J Cell Biol 109:1389–1397

    Article  PubMed  CAS  Google Scholar 

  • Paoli M (2001) Protein folds propelled by diversity. Prog Biophys Mol Biol 76:103–130

    Article  PubMed  CAS  Google Scholar 

  • Peifer M, Berg S, Reynolds AB (1994) A repeating amino acid motif shared by proteins with diverse cellular roles. Cell 76:789–791

    Article  PubMed  CAS  Google Scholar 

  • Petosa C, Schoehn G, Askjaer P, Bauer U, Moulin M, Steuerwald U, Soler-Lopez M, Baudin F, Mattaj IW, Muller CW (2004) Architecture of CRM1/Exportin1 suggests how cooperativity is achieved during formation of a nuclear export complex. Mol Cell 16:761–775

    Article  PubMed  CAS  Google Scholar 

  • Pyhtila B, Rexach M (2003) A gradient of affinity for the karyopherin Kap95p along the yeast nuclear pore complex. J Biol Chem 278:42699–42709

    Article  PubMed  CAS  Google Scholar 

  • Renault L, Nassar N, Vetter I, Becker J, Klebe C, Roth M, Wittinghofer A (1998) The 1.7 A crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller. Nature 392:97–101

    Article  PubMed  CAS  Google Scholar 

  • Renault L, Kuhlmann J, Henkel A, Wittinghofer A (2001) Structural basis for guanine nucleotide exchange on Ran by the regulator of chromosome condensation (RCC1). Cell 105:245–255

    Article  PubMed  CAS  Google Scholar 

  • Richards SA, Lounsbury KM, Macara IG (1995) The C terminus of the nuclear RAN/TC4 GTPase stabilizes the GDP-bound state and mediates interactions with RCC1, RAN-GAP, and HTF9A/RANBP1. J Biol Chem 270:14405–14411

    Article  PubMed  CAS  Google Scholar 

  • Robbins J, Dilworth SM, Laskey RA, Dingwall C (1991) Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64:615–623

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez MS, Dargemont C, Stutz F (2004) Nuclear export of RNA. Biol Cell 96:639–655

    Article  PubMed  CAS  Google Scholar 

  • Rosenblum JS, Blobel G (1999) Autoproteolysis in nucleoporin biogenesis. Proc Natl Acad Sci U S A 96:11370–11375

    Article  PubMed  CAS  Google Scholar 

  • Rout MP, Blobel G (1993) Isolation of the yeast nuclear pore complex. J Cell Biol 123:771–783

    Article  PubMed  CAS  Google Scholar 

  • Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT (2000) The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol 148:635–651

    Article  PubMed  CAS  Google Scholar 

  • Scheffzek K, Klebe C, Fritz-Wolf K, Kabsch W, Wittinghofer A (1995) Crystal structure of the nuclear Ras-related protein Ran in its GDP-bound form. Nature 374:378–381

    Article  PubMed  CAS  Google Scholar 

  • Schmitt I, Gerace L (2001) In vitro analysis of nuclear transport mediated by the C-terminal shuttle domain of Tap. J Biol Chem 276:42355–42363

    Article  PubMed  CAS  Google Scholar 

  • Schmitt C, von Kobbe C, Bachi A, Pante N, Rodrigues JP, Boscheron C, Rigaut G, Wilm M, Seraphin B, Carmo-Fonseca M, Izaurralde E (1999) Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN/Nup159p. EMBO J 18:4332–4347

    Article  PubMed  CAS  Google Scholar 

  • Seewald MJ, Korner C, Wittinghofer A, Vetter IR (2002) RanGAP mediates GTP hydrolysis without an arginine finger. Nature 415:662–666

    Article  PubMed  CAS  Google Scholar 

  • Stewart M, Kent HM, McCoy AJ (1998a) Structural basis for molecular recognition between nuclear transport factor 2 (NTF2) and the GDP-bound form of the Ras-family GTPase Ran. J Mol Biol 277:635–646

    Article  PubMed  CAS  Google Scholar 

  • Stewart M, Kent HM, McCoy AJ (1998b) The structure of the Q69L mutant of GDP-Ran shows a major conformational change in the switch II loop that accounts for its failure to bind nuclear transport factor 2 (NTF2). J Mol Biol 284:1517–1527

    Article  PubMed  CAS  Google Scholar 

  • Strom AC, Weis K (2001) Importin-beta-like nuclear transport receptors. Genome Biol 2:REVIEWS3008

    Article  PubMed  CAS  Google Scholar 

  • Suntharalingam M, Wente SR (2003) Peering through the pore: nuclear pore complex structure, assembly, and function. Dev Cell 4:775–789

    Article  PubMed  CAS  Google Scholar 

  • Teixeira MT, Siniossoglou S, Podtelejnikov S, Benichou JC, Mann M, Dujon B, Hurt E, Fabre E (1997) Two functionally distinct domains generated by in vivo cleavage of Nup145p: a novel biogenesis pathway for nucleoporins. EMBO J 16:5086–5097

    Article  PubMed  CAS  Google Scholar 

  • Vetter IR, Arndt A, Kutay U, Gorlich D, Wittinghofer A (1999a) Structural view of the Ran–Importin beta interaction at 2.3 A resolution. Cell 97:635–646

    Article  PubMed  CAS  Google Scholar 

  • Vetter IR, Nowak C, Nishimoto T, Kuhlmann J, Wittinghofer A (1999b) Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue: implications for nuclear transport. Nature 398:39–46

    Article  PubMed  CAS  Google Scholar 

  • Walther TC, Alves A, Pickersgill H, Loiodice I, Hetzer M, Galy V, Hulsmann BB, Kocher T, Wilm M, Allen T, Mattaj IW, Doye V (2003) The conserved Nup107–160 complex is critical for nuclear pore complex assembly. Cell 113:195–206

    Article  PubMed  CAS  Google Scholar 

  • Weirich CS, Erzberger JP, Berger JM, Weis K (2004) The N-terminal domain of Nup159 forms a beta-propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore. Mol Cell 16:749–760

    Article  PubMed  CAS  Google Scholar 

  • Weis K (2003) Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112:441–451

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, Rout MP, Akey CW (1998) Three-dimensional architecture of the isolated yeast nuclear pore complex: functional and evolutionary implications. Mol Cell 1:223–234

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Chris Weirich for her help with the figures and for discussions and helpful comments on the manuscript. K.W. acknowledges support from NIH grant GM58065.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Weis.

Additional information

Communicated by E. A. Nigg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madrid, A.S., Weis, K. Nuclear transport is becoming crystal clear. Chromosoma 115, 98–109 (2006). https://doi.org/10.1007/s00412-005-0043-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-005-0043-3

Keywords

Navigation