Skip to main content
Log in

Nanoscale processes of trace element mobility in metamorphosed zircon

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Several examples of zircon grains from high- to ultrahigh-pressure (UHP) and ultrahigh-temperature (UHT) metapelites exhibit a characteristic, yet atypical, core–rim interface domain < 5-μm wide observed in cathodoluminescence (CL) imaging. The interface domain is located immediately against the magmatic core and is comprised of an irregular, 0–2-μm wide, CL-dark domain that is rimmed by a complex, 0–5-μm wide, CL-bright domain with cuspate margins. The outer margin of the interface domain is rimmed by intermediate-CL zircon with low contrast zoning. To characterize the nature of the interface domain and to identify mechanisms of trace element mobility in metamorphosed zircon, we analyzed several specimens prepared from zircon from the Rhodope Metamorphic Complex (eastern Greece) and the Goshen Dome (western Massachusetts, USA) via atom probe tomography (APT). The data reveal three types of geochemical anomalies, each with a unique morphology. (1) Toroidal clusters with high concentrations of Pb (+ Y, Al) are found exclusively within the core of the Rhodope grain. These clusters are interpreted as decorated dislocation loops that formed during metamorphism and annealing of radiation damage to the lattice. Geochronological and geochemical data support this interpretation. (2) Complex, cross-cutting planar and linear features with anomalous concentrations of Y + P + Yb or U are spatially restricted to the core–rim interface domain; these features do not correlate with inherited geochemical variation (oscillatory zoning) or deformation-induced microstructures. Instead, the planar features likely formed in response to an interface-coupled dissolution–reprecipitation reaction that propagated into the crystal during metamorphism. The observed cross-cutting relationships are the product of either multiple events or complexity of the process that originally formed the domains. (3) Ellipsoidal features with high concentrations of Y + P + Yb (+ Al) are found exclusively within the high-Y + P + Yb planar features. These features are interpreted as the product of spinodal decomposition that occurred during exhumation as the zircon passed the solvus where local equilibria favored nm-scale exsolution to minimize the Gibbs free energy. The presence of multiple types of geochemical features in these examples indicates that trace element mobility in zircon is driven by multiple processes over the course of orogenesis. Given that these atypical domains are apparently restricted to zircon metamorphosed at UHT and (U)HP conditions, their presence may represent a marker of metamorphism at very high-grade conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ague JJ, Axler JA (2016) Interface coupled dissolution–reprecipitation in garnet from subducted granulites and ultrahigh-pressure rocks revealed by phosphorous, sodium, and titanium zonation. Am Minerol 101:1696–1699

    Google Scholar 

  • Armstrong TR, Tracy RJ, Hames WE (1992) Contrasting styles of Taconian, Eastern Acadian and Western Acadian metamorphism, central and western New England. J Metamorph Geol 10:415–426. https://doi.org/10.1111/j.1525-1314.1992.tb00093.x

    Article  Google Scholar 

  • Bursill LA, McLaren AC (1966) Transmission electron microscope study of natural radiation damage in zircon (ZrSiO4). Phys Status Solidi B 13:331–343

    Google Scholar 

  • Cheney JT, Spear FS, Kirk-Lawlor N (2006) The mysterious machinations of muscovite and monazite during metamorphism or how the CVS (Connecticut Valley synclinorium) survived PMS (post-metamorphic-stretching). Geological Society of America Abstracts with Programs 38, 49, https://gsa.confex.com/gsa/2006AM/finalprogram/abstract_113956.htm. Accessed 20 Mar 2019

  • Cherniak DJ (2010) Diffusion in accessory minerals: zircon, titanite, apatite, monazite and xenotime. Rev Mineral Geochem 72(1):827–869

    Google Scholar 

  • Cherniak DJ, Watson EB (2003) Diffusion in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon, vol 53. Reviews in mineralogy and geochemistry. Mineralogical Society of America, Washington D.C., pp 113–143 (ch. 5)

    Google Scholar 

  • Cherniak DJ, Lanford WA, Ryerson FJ (1991) Lead diffusion in apatite and zircon using ion implantation and Rutherford Backscattering techniques. Geochim Cosmochim Acta 55(6):1663–1673

    Google Scholar 

  • Coleman DS, Gray W, Glazner AF (2004) Rethinking the emplacement and evolution of zoned plutons: geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite. Calif Geol 32(5):433–436. https://doi.org/10.1130/G20220.1

    Article  Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. Rev Mineral Geochem 53(1):469–500. https://doi.org/10.2113/0530469

    Article  Google Scholar 

  • Degeling H, Eggins S, Ellis DJ (2001) Zr budgets for metamorphic reactions, and the formation of zircon from garnet breakdown. Mineral Mag 65:749–758. https://doi.org/10.1180/0026461016560006

    Article  Google Scholar 

  • Devaraj A, Colby R, Vurpillot F, Thevuthasan S (2014) Understanding atom probe tomography of oxide-supported metal nanoparticles by correlation with atomic-resolution electron microscopy and field evaporation simulation. J Phys Chem Lett 5(8):1361–1367

    Google Scholar 

  • Ewing RC, Meldrum A, Wang L, Weber WJ, Corrales LR (2003) Radiation effects in zircon. Rev Mineral Geochem 53(1):387–425. https://doi.org/10.2113/0530387

    Article  Google Scholar 

  • Fougerouse D, Reddy SM, Saxey DW, Rickard WDA, van Riessen A, Micklethwaite S (2016) Nanoscale gold clusters in arsenopyrite controlled by growth rate not concentration: evidence from atom probe microscopy. Am Minerol 101(8):1916–1919. https://doi.org/10.2138/am-2016-5781

    Article  Google Scholar 

  • Fougerouse D, Reddy SM, Saxey DW, Erickson TM, Kirkland CL, Rickard WDA, Seydoux-Guillaume AM, Clark C, Buick IS (2018) Nanoscale distribution of Pb in monazite revealed by atom probe microscopy. Chem Geol 479:251–258

    Google Scholar 

  • Fougerouse D, Reddy SM, Kirkland CL, Saxey DW, Rickard WD, Hough RM (2019) Time-resolved, defect-hosted, trace element mobility in deformed Witwatersrand pyrite. Geosci Front 10(1):55–63

    Google Scholar 

  • Fynn GW, Powell WJA (1979) The cutting and polishing of electro-optic materials. Adams Hilger, London

    Google Scholar 

  • Garver JI, Brandon MT, Roden-Tice MK, Kamp PJJ (1999) Exhumation history of orogenic highlands determined by detrital fission track thermochronology. In: Ring U, Brandon MT, Willet SD, Lister GS (eds) Exhumation processes: normal faulting, ductile flow, vol 154. Special publications. Geological Society of London, London, pp 283–304

    Google Scholar 

  • Gatewood MP, Dragovic B, Stowell HH, Baxter EF, Hirsch DM, Bloom R (2015) Evaluating chemical equilibration in metamorphic rocks us- ing major element and Sm-Nd isotopic age zoning in garnet, Townshend Dam, Vermont, U.S.A. Chem Geol 401:151–168. https://doi.org/10.1016/j.chemgeo.2015.02.017

    Article  Google Scholar 

  • Gehrels GE, Blakey R, Karlstrom KE, Timmons JM, Dickinson B, Pecha M (2011) Detrital zircon U–Pb geochronology of Paleozoic strata in the Grand Canyon, Arizona. Lithosphere 3(3):183–200. https://doi.org/10.1130/L121.1

    Article  Google Scholar 

  • Geisler T (2002) Isothermal annealing of partially metamict zircon: evidence for a three-stage recovery process. Phys Chem Miner 29(6):420–429

    Google Scholar 

  • Geisler T, Pidgeon RT, van Bronswijk W, Pleysier R (2001) Kinetics of thermal recovery and recrystallization of partially metamict zircon: a Raman spectroscopic study. Eur J Mineral 13:1163–1176

    Google Scholar 

  • Geisler T, Pidgeon RT, Kurtz R, van Bronswijk W, Schleicher H (2003) Experimental hydrothermal alteration of partially metamict zircon. Am Minerol 88:1496–1513

    Google Scholar 

  • Geisler T, Schaltegger U, Tomaschek F (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements 3:43–50. https://doi.org/10.2113/gselements.3.1.43

    Article  Google Scholar 

  • Geisler T, Janssen A, Scheiter D, Stephan T, Berndt J, Putnis A (2010) Aqueous corrosion of borosilicate class under acidic conditions: a new corrosion mechanism. J Non Cryst Solids 356:1458–1465

    Google Scholar 

  • Grand’Homme A, Janots E, Seydoux-Guillaume AM, Guillaume D, Magnin V, Hövelmann J, Höschen C, Boiron MC (2018) Mass transport and fractionation during monazite alteration by anisotropic replacement. Chem Geol 484:51–68

    Google Scholar 

  • Gray MB, Zeitler PK (1997) Comparison of clastic wedge provenance in the Appalachian foreland using U/Pb ages of detrital zircons. In: Tectonics, vol 16, issue 1. https://doi.org/10.1029/96TC02911

    Google Scholar 

  • Hanchar JM, Miller CF (1993) Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: implications for interpretation of complex crustal histories. Chem Geol 110:1–13

    Google Scholar 

  • Hanchar JM, Finch RJ, Hoskin PWO, Watson EB, Cherniak DJ, Mariano AN (2001) Rare earth elements in synthetic zircon: part 1. Synthesis, and rare earth element and phosphorus doping. Am Minerol 86:667–680

    Google Scholar 

  • Harley SL, Kelly NM, Möller A (2007) Zircon behavior and the thermal histories of mountain chains. Elements 3:25–30. https://doi.org/10.2113/gselements.3.1.25

    Article  Google Scholar 

  • Harlov DE, Wirth R, Hetherington CJ (2011) Fluid-mediated partial alteration in monazite: the role of coupled dissolution–reprecipitation in element redistribution and mass transfer. Contrib Minerol Petrol 162:329–348. https://doi.org/10.1007/s00410-010-0599-7

    Article  Google Scholar 

  • Hatch NL Jr, Warren CR (1981) Geologic map of the Goshen quadrangle, Franklin and Hampshire Counties, Massachusetts. U.S. Geological Survey Geologic Quadrangle Map GQ-1561, scale 1: 24,000, http://pubs.er.usgs.gov/publication/gq1561. Accessed 20 Mar 2019

  • Hellman OC, Vandenbroucke JA, Rüsing J, Isheim D, Seidman DN (2000) Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc Microanal 6(05):437–444

    Google Scholar 

  • Hermann J, Rubatto D (2003) Relating zircon and monazite domains to garnet growth zones: age and duration of granulite facies metamorphism in the Val Malenco lower crust. In: Tectonics, vol 21, issue 9. https://doi.org/10.1046/j.1525-1314.2003.00484.x

    Google Scholar 

  • Hoskin PWO, Ireland TR (2000) Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 28:627–630

    Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–62

    Google Scholar 

  • Janák M, Froitzheim N, Georgiev N, Nagel TJ, Sarov S (2011) PT evolution of kyanite eclogite from the Pirin Mountains (SW Bulgaria): implications for the Rhodope UHP Metamorphic Complex. J Metamorph Geol 29:317–332

    Google Scholar 

  • Kelly NM, Harley SL (2005) An integrated microtextural and chemical approach to zircon geochronology: refining the Archaeanhistory of the Napier Complex, east Antarctica. Contrib Miner Petrol 149:57–84. https://doi.org/10.1007/s00410-004-0635-6

    Article  Google Scholar 

  • Karabinos P, Samson SD, Hepburn JC, Stoll HM (1998) Taconian Orogeny in the New England Appalachians; collision between Laurentia and the Shelburne Falls Arc. Geology 26:215–218

    Google Scholar 

  • Kirchenbaur M, Pleuger J, Jahn-Awe S, Nagel TJ, Froitzheim N, Fonseca ROC, Münker C (2011) Timing of high-pressure metamorphic events in the Bulgarian Rhodopes from Lu–Hf garnet geochronology. Contrib Mineral Petrol 163:897–921

    Google Scholar 

  • Kirkland CL, Fougerouse D, Reddy SM, Hollis J, Saxey DW (2018) Assessing the mechanisms of common Pb incorporation into titanite. Chem Geol 483:558–566

    Google Scholar 

  • Klapper H (2010) Generation and propagation of defects during crystal growth. In: Dhanaraj G, Byrappa K, Prasad V, Dudley M (eds) Springer handbook of crystal growth. Springer Handbooks, Springer, Berlin, Heidelberg, pp 93–132

    Google Scholar 

  • Kogawa M, Watson EB, Ewing RC, Utsunomiya S (2012) Lead in zircon at the atomic scale. Am Minerol 97:1094–1102

    Google Scholar 

  • Kohn MJ, Kelly NM (2018) Petrology and geochronology of metamorphic zircon. In: Moser DE, Corfu F, Darling JR, Reddy SM, Tait K (eds) Microstructural geochronology: planetary records down to atom scale, vol 232. pp 35–61. https://doi.org/10.1002/9781119227250.ch2

    Google Scholar 

  • Kohn MJ, Corrie SL, Markley C (2015) The fall and rise of metamorphic zircon. Am Minerol 100:897–908

    Google Scholar 

  • Krenn K, Bauer C, Proyer A, Klötzli U, Hoinkes G (2010) Tectonometamorphic evolution of the Rhodope orogen. Tectonics 29:4001

    Google Scholar 

  • Kusiak MA, Whitehouse MJ, Wilde SA, Nemchin A, Clark C (2013) Mobilization of radiogenic Pb in zircon revealed by ion imaging: implications for early Earth geochronology. Geology 41(3):291–294

    Google Scholar 

  • Kusiak MA, Dunkley DJ, Wirth R, Whitehouse MJ, Wilde SA, Marquardt K (2015) Metallic lead nanospheres discovered in ancient zircons. Proc Natl Acad Sci 112:4958–4963. https://doi.org/10.1073/pnas.1415264112

    Article  Google Scholar 

  • Kusiak MK, Wilde SA, Wirth R, Whitehouse MJ, Dunkley DJ, Lyon I, Reddy SM, Berry A, de Jonge M (2018) Detecting micro-and nanoscale variations in element mobility in high-grade metamorphic rocks: implication for precise U-Pb dating of zircon. In: Moser DE, Corfu F, Darling JR, Reddy SM, Tait K (eds) Microstructural geochronology: planetary records down to atom scale, Geophysical Monograph, Wiley vol 232. pp 279–291

  • La Fontaine A, Piazolo S, Trimby P, Yang L, Cairney JM (2017) Laser-Assisted atom probe tomography of deformed minerals: a zircon case study. Microsc Microanal 23:404–413. https://doi.org/10.1017/S1431927616012745

    Article  Google Scholar 

  • Laurent AT, Bingen B, Duchene S, Whitehouse MJ, Seydoux-Guillaume A-M, Bosse V (2018) Decoding protracted zircon geochronological record in ultra-high temperature granulite, and persistence of partial melting in the crust, Rogaland, Norway. Contrib Mineral Petrol 173:29. https://doi.org/10.1007/s00410-018-1455-4

    Article  Google Scholar 

  • Liati A (2005) Identification of repeated Alpine (ultra) high-pressure metamorphic events by U–Pb SHRIMP geochronology and REE geochemistry of zircon: the Rhodope zone of Northern Greece. Contrib Mineral Petrol 150:608–630

    Google Scholar 

  • Liati A, Gebauer D, Fanning CM (2011) Geochronology of the alpine uhp rhodope zone: a review of isotopic ages and constraints on the geodynamic evolution. In: Dobrzhinetskaya L, Garyad SW, Wallis S, Cuthbert S (eds) Ultrahigh-pressure metamorphism: 25 years after the discovery of Coesite and Diamond. Elsevier, London, pp 295–324

    Google Scholar 

  • Liati A, Theye T, Fanning CM, Gebauer D, Rayner N (2016) Multiple subduction cycles in the Alpine orogeny, as recorded in single zircon crystals (Rhodope zone, Greece). Gondwana Res 29:199–207. https://doi.org/10.1016/j.gr.2014.11.007

    Article  Google Scholar 

  • Macdonald FA, Ryan-Davis J, Coish RA, Crowley JL, Karabinos P (2014) A newly identified Gondwanan terrane in the northern Appalachian Mountains: implications for the Taconic orogeny and closure of the Iapetus Ocean. Geology. https://doi.org/10.1130/G35659.1

    Article  Google Scholar 

  • Meldrum A, Boatner LA, Weber WJ, Ewing RC (1998) Radiation damage in zircon and monazite. Geochim Cosmochim Acta 62(14):2509–2520

    Google Scholar 

  • Melnik OE, Bindeman IN (2018) Modeling of trace element zoning patterns in accessory minerals with emphasis on the origin of micrometer-scale oscillatory zoning in zircon. Am Minerol 103:355–368

    Google Scholar 

  • Mposkos ED, Kostopoulos DK (2001) Diamond, former coesite and supersilicic garnet in meta-sedimentary rocks from the Greek Rhodope: a new ultrahigh-pressure metamorphic province established. Earth Planet Sci Lett 192:497–506

    Google Scholar 

  • Murakami T, Chakoumakos BC, Ewing RC, Lumpkin GR, Weber WJ (1991) Alpha-decay event damage in zircon. Am Minerol 76:1510–1532

    Google Scholar 

  • Nasdala L, Pidgeon RT, Wolf D, Irmer G (1998) Metamictization and U-Pb isotopic discordance in single zircons: a combined Raman microprobe and SHRIMP ion probe study. Mineral Petrol 62(1–2):1–27

    Google Scholar 

  • Nasdala L, Wenzel M, Vavr G, Irmer G, Wenzel T, Kober B (2001) Metamictization of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage. Contrib Minerol Petrol 141:125–144. https://doi.org/10.1007/s004100000235

    Article  Google Scholar 

  • Nasdala L, Lengauer CL, Hanchar JM, Kronz A, Wirth R, Blanc P, Kennedy AK, Seydoux-Guillaume A-M (2002) Annealing radiation damage and the recovery of cathodoluminescence. Chem Geol 191:121–140

    Google Scholar 

  • Nasdala L, Zhang M, Kempe U, Panczer G, Gaft M, Andrut M, Plötze M (2003) Spectroscopic methods applied to zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon. Reviews in mineralogy and geochemistry. Mineralogical Society of America, pp 427–467

  • Nasdala L, Reiners PW, Garver JI, Kennedy AK, Stern RA, Balan E, Wirth R (2004) Incomplete retention of radiation damage in zircon from Sri Lanka. Am Minerol 89:219–231

    Google Scholar 

  • Nemchin AA, Giannini LM, Bodorkos A, Oliver NHS (2001) Ostwald ripening as a possible mechanism for zircon overgrowth formation during anatexis: theoretical constraints, a numerical model, and its application to pelitic migmatites of the Tickalara Metamorphics, northwestern Australia. Geochim Cosmochim Acta 65(16):2771–2788. https://doi.org/10.1016/S0016-7037(01)00622-6

    Article  Google Scholar 

  • Perraki M, Proyer A, Mposkos E, Kaindl R, Hoinkes G (2006) Raman micro-spectroscopy on diamond, graphite and other carbon polymorphs from the ultrahigh-pressure metamorphic Kimi Complex of the Rhodope Metamorphic Province, NE Greece, Earth Planet. Sci Lett 241:672–685. https://doi.org/10.1016/j.epsl.2005.11.014

    Article  Google Scholar 

  • Peterman EM, Snoeyenbos DR (2015) Atypical dissolution–reprecipitation reactions in zircon from HP/UHP metapelites. Geol Soc Am Abstr Progr 47(7):168

    Google Scholar 

  • Peterman EM, Reddy SM, Saxey DW, Snoeyenbos DR, Rickard WDA, Fougerouse D, Kylander-Clark ARC (2016a) Nanogeochronology of discordant zircon measured by atom probe microscopy of Pb-enriched dislocation loops. Sci Adv 2:e.1601218. https://doi.org/10.1126/sciadv.1601318

    Article  Google Scholar 

  • Peterman EM, Snoeyenbos DR, Jercinovic MJ, Kylander-Clark A (2016b) Dissolution–reprecipitation metasomatism and growth of zircon within phosphatic garnet in metapelites from western Massachusetts. Am Minerol 101:1792–1806

    Google Scholar 

  • Piazolo S, La Fontaine A, Trimby P, Harley S, Yang L, Armstrong R, Cairney JM (2016) Deformation- induced trace element redistribution in zircon revealed using atom probe tomography. Nat Commun 7:10490

    Google Scholar 

  • Pidgeon RT (2014) Zircon radiation damage ages. Chem Geol 367:13–22

    Google Scholar 

  • Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66(5):689–708

    Google Scholar 

  • Putnis A (2009) Mineral replacement reactions. Rev Mineral Geochem 70(1):87–124. https://doi.org/10.2138/rmg.2009.70.3

    Article  Google Scholar 

  • Putnis A, Austrheim H (2010) Fluid-induced processes: metasomatism and metamorphism. Geofluids 10:254–269. https://doi.org/10.1111/j.1468-8123.2010.00285.x

    Article  Google Scholar 

  • Putnis A, John T (2010) Replacement processes in the Earth’s Crust. Elements 6:159–164. https://doi.org/10.2113/gselements.6.3.159

    Article  Google Scholar 

  • Pyle JM, Spear FS (2003) Four generations of accessory-phase growth in low-pressure migmatites from SW New Hampshire. Am Minerol 88:338–351

    Google Scholar 

  • Pyle JM, Spear FS, Cheney JT, Layne G (2005) Monazite ages in the Chesham Pond Nappe, SW New Hampshire, U.S.A.: implications for assembly of central New England thrust sheets. Am Minerol 90:592–606

    Google Scholar 

  • Reddy SM, Timms NE, Trimby P, Kinny PD, Buchan C, Blake K (2006) Crystal-plastic deformation of zircon: a defect in the assumption of chemical robustness. Geology 34:257–260

    Google Scholar 

  • Reddy SM, Timms NE, Pantleon W, Trimby P (2007) Quantitative characterization of plastic deformation of zircon and geologic implications. Contrib Minerol Petrol 153(6):625–645

    Google Scholar 

  • Reddy SM, Timms NE, Hamilton PJ, Smyth HR (2009) Deformation-related microstructures in magmatic zircon and implications for diffusion. Contrib Minerol Petrol 157(2):231–244

    Google Scholar 

  • Reddy SM, Johnson TE, Fischer S, Rickard WDA, Taylor RJM (2015) Precambrian reidite discovered in shocked zircon from the Stac Fada impactite, Scotland. Geology 43(10):899–902. https://doi.org/10.1130/G37066.1

    Article  Google Scholar 

  • Reddy SM, van Riessen A, Saxey DW, Johnson TE, Rickard WDA, Fougerouse D, Fischer S, Prosa TJ, Rice KP, Reinhard DA, Chen Y, Olson D (2016) Mechanisms of deformation-induced trace element migration in zircon resolved by atom probe and correlative microscopy. Geochim Cosmochim Acta 195:158–170. https://doi.org/10.1016/j.gca.2016.09.019

    Article  Google Scholar 

  • Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chem Geol 184(1):123–138. https://doi.org/10.1016/S0009-2541(01)00355-2

    Article  Google Scholar 

  • Rubatto D (2017) Zircon: the metamorphic mineral. Rev Mineral Geochem 83:261–296

    Google Scholar 

  • Rubatto D, Muntener O, Barnhoorn A, Gregory C (2008) Dissolution-reprecipitation of zircon at low-temperature, high-pressure conditions (Lanzo Massif, Italy). Am Minerol 93:1519–1529

    Google Scholar 

  • Salje EKH, Chrosch J, Ewing RC (1999) Is “metamictization” of zircon a phase transition? Am Minerol 84:1107–1116

    Google Scholar 

  • Schaltegger U, Fanning C, Günther D et al (1999) Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in situ U–Pb isotope, cathodoluminescence and microchemical evidence. Contrib Minerol Petrol 134:186–201. https://doi.org/10.1007/s004100050478

    Article  Google Scholar 

  • Schmidt S, Nagel TJ, Froitzheim N (2010) A new occurrence of microdiamond-bearing metamorphic rocks, SW Rhodopes, Greece. Eur J Mineral 22:189–198

    Google Scholar 

  • Schmitz MD, Bowring SA (2004) Lower crustal granulite formation during Mesoproterozoic Namaqua-Natal collisional orogenesis, southern Africa. S Afr J Geol 107:19–42

    Google Scholar 

  • Schoene B, Samperton KM, Eddy MP, Keller G, Adatte T, Bowring SA, Khadri SAR, Gertsch B (2015) U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction. Science 347(18):182–184. https://doi.org/10.1126/science.aaa0118

    Article  Google Scholar 

  • Seydoux-Guillaume AM, Bingen B, Paquette JL, Bosse V (2015) Nanoscale evidence for uranium mobility in zircon and the discordance of U–Pb chronometers. Earth Planet Sci Lett 409:43–48

    Google Scholar 

  • Saxey D, Reddy SM, Fougerouse D, Rickard WD (2018) The optimization of zircon analyses by laser-assisted atom probe microscopy: insights from the 91500 zircon standard. In: Moser DE, Corfu F, Darling JR, Reddy SM, Tait K (eds) Microstructural geochronology: planetary records down to atom scale, Geophysical monograph, vol 232. Wiley, pp 293–313

  • Seydoux-Guillaume A-M, Bingen B, Bosse V, Janots E, Laurent AT (2018) Transmission electron microscope imaging sharpens geochronological interpretations of zircon and monazite. In: Moser DE, Corfu F, Darling JR, Reddy SM, Tait K (eds) Microstructural geochronology: planetary records down to atom scale, vol 232. pp 261–275. https://doi.org/10.1002/9781119227250.ch12

    Google Scholar 

  • Seydoux-Guillaume A-M, Fougerouse D, Laurent A, Gardés E, Reddy S, Saxey D (2019) Nanoscale resetting of the Th/Pb system in an isotopically-closed monazite grain: a combined atom probe and transmission electron microscopy study. Geosci Front 10(1):65–76

    Google Scholar 

  • Snoeyenbos DR, Koziol A, Russell A, Ebel DS, Valley JW (2011) Prograde growth history of possible relic UHP garnets from the Taconian of Western Massachusetts. In: American Geophysical Union, Fall meeting 2011, Abstract V21G-04

  • Soman A, Geisler T, Tomaschek F, Grange M, Berndt J (2010) Alteration of crystalline zircon solid solutions: a case study on zircon from an alkaline pegmatite from Zomba–Malosa, Malawi. Contrib Minerol Petrol 160:909–930

    Google Scholar 

  • Spencer CJ, Kirkland CL, Taylor RJM (2016) Strategies towards statistically robust interpretations of in situ U–Pb zircon geochronology. Geosci Front. https://doi.org/10.1016/j.gsf.2015.11.006

    Article  Google Scholar 

  • Taylor RJM, Clark C, Johnson TE, Santosh M, Collins AS (2015) Unravelling the complexities in high-grade rocks using multiple techniques: the Achankovil Zone of southern India. Contrib Minerol Petrol 169:51. https://doi.org/10.1007/s00410-015-1147-2

    Article  Google Scholar 

  • Thompson K, Lawrence D, Larson DJ, Olson JD, Kelly TF, Gorman B (2007) In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107:131–139

    Google Scholar 

  • Timms NE, Reddy SM, Fitz Gerald JD, Green L, Muhling JR (2012) Inclusion-localised crystal-plasticity, dynamic porosity, and fast-diffusion pathway generation in zircon. J Struct Geol 35:78–89

    Google Scholar 

  • Tomaschek F (2010) Praktische Aspekte der Mischkristallphase Zirkon: Reequilibrierungsprozess, Zirkon-Xenotim Mischungslücke, geochronologische Anwendungen in einem polymetamorphen Kristallinkomplex (Syros, Kykladen, Griechenland). Ph.D. thesis, Münster, Westfälische Wilhelms-Universität Münster

  • Tomaschek F, Kennedy AK, Villa IM, Lagos M, Ballhaus C (2003) Zircons from Syros, Cyclades, Greece—recrystallization and mobilization of zircon during high-pressure metamorphism. J Petrol 44(11):1977–2002

    Google Scholar 

  • Valley JW (2003) Oxygen isotopes in zircon. Rev Mineral Geochem 53(1):343–385. https://doi.org/10.2113/0530343

    Article  Google Scholar 

  • Valley JW, Cavosie AJ, Ushikubo T, Reinhard DA, Lawrence DF, Larson DJ, Clifton PH, Kelly TF, Wilde SA, Moser DE, Spicuzza MJ (2014) Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nat Geosci 7:219–223

    Google Scholar 

  • Valley JW, Reinhard DA, Cavosie AJ, Ushikubo T, Lawrence DF, Larson DJ, Kelly TF, Snoeyenbos DR, Strickland A (2015) Nano-and micro-geochronology in Hadean and Archean zircons by atom-probe tomography and SIMS: new tools for old minerals. Am Minerol 100(7):1355–1377

    Google Scholar 

  • Vavra G, Gebauer D, Schmid R, Compston W (1996) Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): an ion microprobe (SHRIMP) study. Contrib Minerol Petrol 122:337–358

    Google Scholar 

  • Vavra G, Schmid R, Gebauer D (1999) Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps). Contrib Minerol Petrol 134:380–404

    Google Scholar 

  • Vonlanthen P, Fitz Gerald JD, Rubatto R, Hermann J (2012) Recrystallization rims in zircon (Valle d’Arbedo, Switzerland): an integrated cathodoluminescence, LA–ICP–MS, SHRIMP, and TEM study. Am Minerol 97:369–377

    Google Scholar 

  • White LF, Darling JR, Moser DE, Reinhard DA, Prosa TJ, Bullen D, Olson D, Larson DJ, Lawrence D, Martin I (2017) Atomic-scale age resolution of planetary events. Nat Commun. https://doi.org/10.1038/ncomms15597

  • Whitehouse MJ, Platt JP (2003) Dating high-grade metamorphism—constraints from rare-earth elements in zircon and garnet. Contrib Minerol Petrol 145(1):61–74. https://doi.org/10.1007/s00410-002-0432-z

    Article  Google Scholar 

  • Zeck HP, Williams IS (2002) Inherited and magmatic zircon from Neogene Hoyazo Cordierite Dacite, SE Spain—Anatectic Source Rock provenance and magmatic evolution. J Petrol 43(6):1089–1104

    Google Scholar 

  • Zhang M, Salje EKH, Capitani GC, Leroux H, Clark AM, Schlüter J, Ewing RC (2000a) Annealing of α-decay damage in zircon: a Raman spectroscopic study. J Phys Condens Matter 12:3131–3148

    Google Scholar 

  • Zhang M, Salje EKH, Farnan I, Graeme-Barber A, Daniel P, Ewing RC, Clark AM, Leroux H (2000b) Metamictization of zircon: Raman spectroscopic study. J Phys Condens Matter 12:1915–1925

    Google Scholar 

Download references

Acknowledgements

The authors thank D. Rubatto for editorial handling. Two anonymous reviewers provided helpful comments that improved the manuscript. This work was supported in part by NSF EAR-1650054 to Peterman and Bowdoin College Research Funds. The SEM facility at Bowdoin was supported by NSF MRI-1530963 to E.M. Peterman and R.J. Beane. The Geosciene Atom Probe Facility is supported by ARC CE11E0070 and SIEF RI13-01 to S.M. Reddy. The Advanced Resource Characterisation Facility under the auspices of the National Resource Sciences Precinct—a collaboration between the Commonwealth Scientific and Industrial Research Organization, Curtin University, and the University of Western Australia—was supported by the Science and Industry Endowment Fund. The UltraChron development project was supported by NSF EAR-0004077 and NSF EAR-0549639 to M.L. Williams and M.J. Jercinovic at the University of Massachusetts, and collaboratively by CAMECA. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Peterman.

Additional information

Communicated by Daniela Rubatto.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5051 kb)

Supplementary material 2 (PDF 5662 kb)

Supplementary material 3 (M4 V 29136 kb)

Supplementary material 4 (MP4 29672 kb)

Supplementary material 5 (M4 V 29167 kb)

Supplementary material 6 (M4 V 28136 kb)

Supplementary material 7 (MP4 17296 kb)

Supplementary material 8 (MP4 16299 kb)

Supplementary material 9 (MP4 16411 kb)

Supplementary material 10 (MP4 15348 kb)

Supplementary material 11 (MP4 17892 kb)

Supplementary material 12 (MP4 3413 kb)

Supplementary material 13 (MP4 6109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peterman, E.M., Reddy, S.M., Saxey, D.W. et al. Nanoscale processes of trace element mobility in metamorphosed zircon. Contrib Mineral Petrol 174, 92 (2019). https://doi.org/10.1007/s00410-019-1631-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-019-1631-1

Keywords

Navigation