Skip to main content
Log in

Magmatic evolution of the South Shetland Islands, Antarctica, and implications for continental crust formation

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Lavas from the South Shetland Islands volcanic arc (northern Antarctic Peninsula) have been investigated in order to determine the age, petrogenesis and compositional evolution of a long-lived volcanic arc constructed on 32-km-thick crust, a thickness comparable with average continental crust. New 40Ar–39Ar ages for the volcanism range between 135 and 47 Ma and, together with published younger ages, confirm a broad geographical trend of decreasing ages for the volcanism from southwest to northeast. The migration pattern breaks down in Palaeogene time, with Eocene magmatism present on both Livingston and King George islands, which may be due to a change in both subduction direction and velocity after c. 60 Ma. The lavas range from tholeiitic to calc-alkaline, but there is no systematic change with age or geographic location. The compositions of lavas from the north-eastern islands indicate magma generation in a depleted mantle wedge with relatively low Sr and high Nd isotopic compositions and low U/Nb, Th/Nd and Ba/Nb ratios that was metasomatized by hydrous fluids from subducted basaltic oceanic crust. Lavas from the south-western islands show an additional sedimentary influence most likely due to fluid release from subducted sediments into the mantle wedge. Although magmatic activity in the South Shetland arc extended over c. 100 m.y., there is no evolution towards more enriched or evolved magmas with time. Few South Shetland arc lavas are sufficiently enriched with incompatible elements to provide a potential protolith for the generation of average continental crust. We conclude that even long-established subduction zones with magmatic systems founded on relatively thick crust do not necessarily form continental crustal building blocks. They probably represent only the juvenile stages of continental crust formation, and additional re-working, for example during subsequent arc-continental margin collision, is required before they can evolve into average continental crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Almeida Delia del PM, Machado A, Hansen MA, Fensterseifer H, Lima LD, Gomes CH (2000) An extrusive-plutonic event at Fort Point and its vicinity—Greenwich Island—Antarctic. Revista Brasileira de Geociências 30:12–16

    Google Scholar 

  • Barker PF (1982) The Cenozoic subduction history of the Pacific margin of the Antarctic Peninsula: ridge-crust-trench interactions. J Geol Soc Lond 139:787–801

    Article  Google Scholar 

  • Ben Othman D, White WM, Patchett J (1989) The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth Planet Sci Lett 94:1–21

    Article  Google Scholar 

  • Birkenmajer K (1989) A guide to Tertiary geochronology of King George Island, West Antarctica. Pol Polar Res 10:555–579

    Google Scholar 

  • Birkenmajer K (1994) Evolution of the Pacific margin of the northern Antarctic Peninsula: an overview. Geologische Rundschau 83:309–321

    Google Scholar 

  • Birkenmajer K, Narebski W, Nicoletti M, Petrucciani C (1983) Late Cretaceous through late Oligocene K–Ar ages of the King George Island Supergroup volcanics, South Shetland Islands (West Antarctica). Bull Pol Acad Sci, Earth Sci 30:133–143

    Google Scholar 

  • Birkenmajer K, Soliani E, Kawashita K (1990) Reliability of potassium-argon dating of Cretaceous-Tertiary island-arc volcanic suites of King George Island, South Shetland Islands (West Antarctica). Zentralblatt fur Geologie und Paläontologie 1:127–140

    Google Scholar 

  • Birkenmajer K, Francalanci L, Peccerillo A (1991) Petrological and geochemical constraints on the genesis of Mesozoic-Cenozoic magmatism of King George Island, South Shetland Islands, Antarctica. Antarct Sci 3:293–308

    Article  Google Scholar 

  • Davidson JP (1987) Crustal contamination versus subduction zone enrichment: examples from the Lesser Antilles and implications for mantle source compositions of island arc volcanic rocks. Geochim Cosmochim Acta 51:2185–2198

    Article  Google Scholar 

  • Davidson JP, Hora JM, Garrison JM, Dungan MA (2005) Crustal forensics in arc magmas. J Volcanol Geotherm Res 140:157–170

    Article  Google Scholar 

  • Davidson J, Turner S, Handley H, Macpherson C, Dosseto A (2007) Amphibole “sponge” in arc crust? Geology 35:787–790

    Article  Google Scholar 

  • Ducea M, Saleeby JB (1998) A case for delamination of the deep batholithic crust beneath the Sierra Nevada, California. Int Geol Rev 40:78–93

    Article  Google Scholar 

  • Duffield WA, Dalrymple GB (1990) The Taylor Creek Rhyolite of New Mexico: a rapidly emplaced field of lava domes and flows. Bull Volcanol 52:589–591

    Article  Google Scholar 

  • Fretzdorff S, Worthington TJ, Haase KM, Hékinian R, Franz L, Keller RA, Stoffers P (2004) Magmatism in the Bransfield Basin: rifting of the south Shetland Arc? J Geophys Res 109. doi:10.1029/2004JB003046

  • Fujinawa A (1988) Tholeiitic and calc-alkaline magma series at Adatara volcano, northeast Japan: 1. Geochemical constraints on their origin. Lithos 22:135–158

    Article  Google Scholar 

  • Garbe-Schönberg C-D (1993) Simultaneous determination of thirty-seven trace elements in twenty-eight international rock standards by ICP-MS. Geostand Newslett 17:81–97

    Article  Google Scholar 

  • Govindaraju K (1994) 1994 compilation of working values and sample description for 383 geostandards. Geostand Newslett 18:1–158

    Google Scholar 

  • Gracanin TM (1983) Geochemistry and geochronology of some Mesozoic igneous rocks from the northern Antarctic Peninsula region. M.Sc. thesis, Ohio State University

  • Grove TL, Kinzler RJ (1986) Petrogenesis of andesites. Ann Rev Earth Planet Sci 14:417–454

    Article  Google Scholar 

  • Guangfu X, Weizhou S, Dezi W, Qingmin J (1997) Sr-Nd-Pb isotopes of Tertiary volcanics of King George Island, Antarctica. Chin Sci Bull 42:1913–1917

    Article  Google Scholar 

  • Guterch A, Grad M, Janik T, Perchuc E, Pajchel J (1985) Seismic study of the crustal structure in West Antarctica 1979–1980—preliminary results. Tectonophysics 114:411–429

    Article  Google Scholar 

  • Haase KM, Fretzdorff S, Beier C, Livermore RA, Leat PT, Hauff F (2010) Magmatic evolution of a dying spreading axis: Evidence for the interaction of tectonics and mantle heterogeneity from the fossil Phoenix Ridge, Drake Passage. Chem Geol 280:115–125. doi:10.1016/j.chemgeo.2010.11.002

    Article  Google Scholar 

  • Hathway B (2000) Continental rift to back-arc basin: Jurassic-Cretaceous stratigraphical and structural evolution of the Larsen Basin, Antarctic Peninsula. J Geol Soc Lond 157:417–432

    Article  Google Scholar 

  • Hathway B, Lomas SA (1998) The upper Jurassic—lower cretaceous Byers group, South Shetland Islands, Antarctica: revised stratigraphy and regional correlations. Cretaceous Res 19:43–67

    Article  Google Scholar 

  • Hathway B, Duane AM, Cantrill DJ, Kelley SP (1999) 40Ar–39Ar geochronology and palynology of the Cerro Negro Formation, South Shetland Islands, Antarctica: a new radiometric tie for Cretaceous terrestrial biostratigraphy in the Southern Hemisphere. Aust J Earth Sci 46:593–606

    Article  Google Scholar 

  • Hoernle KA, Tilton GR (1991) Sr-Nd-Pb isotope data for Fuerteventura (Canary Islands) basal complex and subaerial volcanics: applications to magma genesis and evolution. Schweiz Mineral Petrogr Mitt 71:3–18

    Google Scholar 

  • Hofmann AW, Jochum KP, Seufert M, White WM (1986) Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet Sci Lett 79:33–45

    Article  Google Scholar 

  • Holbrook WS, Lizzaralde D, McGeary S, Bangs N, Diebold JB (1999) Structure and composition of the Aleutian island arc and implications for continental crustal growth. Geology 27:31–34

    Article  Google Scholar 

  • Hole MJ, Kempton PD, Millar IL (1993) Trace-element and isotopic characteristics of small-degree melts of the asthenosphere: evidence from the alkalic basalts of the Antarctic Peninsula. Chem Geol 109:51–68

    Article  Google Scholar 

  • Hole MJ, Saunders AD, Rogers G, Sykes MA (1995) The relationship between alkaline magmatism, lithospheric extension and slab window formation along continental destructive plate margins. In: Smellie JL (ed) Volcanism associated with extension at consuming plate margins, vol Spec. Publ. 81. Geological Society of London, pp 265–285

  • Jagoutz OE (2010) Construction of the granitoid crust of an island arc. Part II: a quantitative petrogenetic model. Contrib Mineral Petrol 160:359–381

    Article  Google Scholar 

  • Jagoutz O, Müntener O, Schmidt MW, Burg J-P (2011) The roles of flux- and decompression melting and their respective fractionation lines for continental crust formation: evidence from the Kohistan arc. Earth Planet Sci Lett 303:25–36

    Article  Google Scholar 

  • Jarrard RD (1986) Relations among subduction parameters. Rev Geophys 24:217–284

    Article  Google Scholar 

  • Jin YK, Lee J, Hong JK, Nam SH (2009) Is subduction ongoing in the South Shetland Trench, Antarctic Peninsula? New constraints from crustal structures of outer trench wall. Geosci J 13:59–67

    Article  Google Scholar 

  • Kamenov BK, Zheng X, Dimov D, Pimpirev C (2005) The isolated plutons in Hurd Peninsula, Livingston Island, Antarctica: petrological and geochronological evidences of their affiliations to Barnard Point Batholith. Geochem Mineral Petrol 42:67–86

    Google Scholar 

  • Kay RW, Kay SM (1991) Creation and destruction of lower continental crust. Geologische Rundschau 80:259–278

    Article  Google Scholar 

  • Kelemen PB, Shimizu N, Dunn T (1993) Relative depletion of niobium in some arc magmas and the continental crust: partitioning of K, Nb, La and Ce during melt/rock reaction in the upper mantle. Earth Planet Sci Lett 120:111–134

    Article  Google Scholar 

  • Keller RA, Fisk MR, Smellie JL, Strelin JA, Lawver LA, White WM (2002) Geochemistry of back arc basin volcanism in Bransfield Strait, Antarctica: Subducted contributions and along-axis variations. J Geophys Res 107:4–1–4-17

    Google Scholar 

  • Keppler H (1996) Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature 380:237–240

    Article  Google Scholar 

  • Kessel R, Schmidt MW, Ulmer P, Pettke T (2005) Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437:724–727

    Article  Google Scholar 

  • Kosler J, Magna T, Mlcoch B, Mixa P, Nyvlt D, Holub FV (2009) Combined Sr, Nd, Pb and Li isotope geochemistry of alkaline lavas from northern James Ross Island (Antarctic Peninsula) and implications for back-arc magma formation. Chem Geol 258:207–218

    Article  Google Scholar 

  • Krienitz M-S, Haase KM (2011) The evolution of the Arabian lower crust and lithospheric mantle—geochemical constraints from southern Syrian mafic and ultramafic xenoliths. Chem Geol 280:271–283. doi:10.1016/j.chemgeo.2010.11.015

    Article  Google Scholar 

  • Krienitz M-S, Haase KM, Mezger K, van den Bogaard P, Thiemann V, Shaikh-Mashail MA (2009) Tectonic events, continental intraplate volcanism and mantle plume activity in northern Arabia: constraints from geochemistry and Ar–Ar dating of Syrian lavas. Geochem Geophys Geosyst 10. doi:10.1029/2008GC002254

  • Kuno H (1966) Lateral variation of basalt magma type across continental margins and island arcs. Bull Volcanol 29:195–222

    Article  Google Scholar 

  • Kuno H (1968) Origin of andesite and its bearing on the island arc structure. Bull Volcanol 32:141–176

    Article  Google Scholar 

  • Lawver LA, Keller RA, Fisk MR, Strelin JA (1995) Bransfield Strait, Antarctic Peninsula active extension behind a dead arc. In: Taylor B (ed) Backarc basins: tectonics and magmatism. Plenum Press, New York, pp 315–342

    Google Scholar 

  • Leat PT, Scarrow JH, Millar IL (1995) On the Antarctic Peninsula batholith. Geol Mag 132:399–412

    Article  Google Scholar 

  • Lee C-TA, Morton DM, Kistler RW, Baird AK (2007) Petrology and tectonics of Phanerozoic continent formation: from island arcs to accretion and continental arc magmatism. Earth Planet Sci Lett 263:370–387

    Article  Google Scholar 

  • Lee MJ, Lee JI, Choe WH, Park C-H (2008) Trace element and isotopic evidence for temporal changes of the mantle sources in the South Shetland Islands, Antarctica. Geochem J 42:207–219

    Article  Google Scholar 

  • Leeman WP (1983) The influence of crustal structure on compositions of subduction-related magmas. J Volcanol Geotherm Res 18:561–588

    Article  Google Scholar 

  • Lehnert K, Su Y, Langmuir CH, Sarbas B, Nohl U (2000) A global geochemical database structure for rocks. Geochem Geophys Geosyst 1. doi:10.1029/1999GC000026

  • Machado A, Chemale F, Conceicao RV, Kawaskita K, Morata D, Oteiza O, Van Schmus WR (2005) Modeling of subduction components in the genesis of the Meso-Cenozoic igneous rocks from the South Shetland Arc, Antarctica. Lithos 82:435–453

    Article  Google Scholar 

  • McCarron JJ, Larter RD (1998) Late Cretaceous to early tertiary subduction history of the Antarctic Peninsula. J Geol Soc Lond 155:255–268

    Article  Google Scholar 

  • McDonough WF, Sun S-S (1995) The composition of the earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • McGuire AV, Stern RJ (1993) Granulite xenoliths from western Saudi Arabia: the lower crust of the late Precambrian Arabian-Nubian Shield. Contrib Mineral Petrol 114:395–408

    Article  Google Scholar 

  • McLennan SM, Taylor SR, McCulloch MT, Maynard JB (1990) Geochemical and Nd–Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochim Cosmochim Acta 54:2015–2050

    Article  Google Scholar 

  • Millar IL, Willan RCR, Wareham CD, Boyce AJ (2001) The role of crustal and mantle sources in the genesis of granitoids of the Antarctic Peninsula and adjacent crustal blocks. J Geol Soc Lond 158:855–867

    Article  Google Scholar 

  • Miller DM, Langmuir CH, Goldstein SL, Franks AL (1992) The importance of parental magma composition to calc-alkaline and tholeiitic evolution: evidence from Umnak Island in the Aleutians. J Geophys Res 97:321–343

    Article  Google Scholar 

  • Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. Am J Sci 274:321–355

    Article  Google Scholar 

  • Nawrocki J, Pancyk M, Williams IS (2010) Isotopic ages and palaeomagnetism of selected magmatic rocks from King George Island (Antarctic Peninsula). J Geol Soc Lond 167:1063–1079. doi:10.1144/0016-76492009-177

    Article  Google Scholar 

  • Pańczyk M, Nawrocki J (2011) Pliocene age of the oldest basaltic rocks of Penguin Island (South Shetland Islands, northern Antarctic Peninsula). Geol Q 55:335–344

    Google Scholar 

  • Pankhurst RJ, Smellie JL (1983) K–Ar geochronology of the South Shetland Islands, Lesser Antarctica: apparent lateral migration of Jurassic to Quaternary island arc volcanism. Earth Planet Sci Lett 66:214–222

    Article  Google Scholar 

  • Pankhurst RJ, Weaver SD, Brook M, Saunders AD (1980) K-Ar chronology of Byers Peninsula, Livingston Island, South Shetland Islands. Bull Br Antarct Surv 49:277–282

    Google Scholar 

  • Pankhurst RJ, Riley TR, Fanning CM, Kelley SP (2000) Evolution of the Pacific margin of the northern Antarctic Peninsula: an overview. J Petrol 41:605–625

    Article  Google Scholar 

  • Pearce JA, Leat PT, Barker PF, Millar IL (2001) Geochemical tracing of Pacific-to-Atlantic upper-mantle flow through the Drake passage. Nature 410:457–461

    Article  Google Scholar 

  • Plank T (2005) Constraints from Thorium/Lanthanum on sediment recycling at subduction zones and the evolution of the continents. J Petrol 46:921–944

    Article  Google Scholar 

  • Plank T, Langmuir CH (1988) An evaluation of the global variations in the major element chemistry of arc basalts. Earth Planet Sci Lett 90:149–170

    Article  Google Scholar 

  • Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394

    Article  Google Scholar 

  • Robertson Maurice SD, Wiens DA, Shore PJ, Vera E, Dorman LM (2003) Seismicity and tectonics of the South Shetland Islands and Bransfield Strait from a regional broadband seismograph deployment. J Geophys Res 108. doi:10.1029/2003JB002416

  • Rudnick RL (1995) Making continental crust. Nature 378:571–578

    Article  Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Treatise on geochemistry, vol 3, Elsevier, pp 1–64

  • Saunders AD, Tarney J, Weaver SD (1980) Transverse geochemical variations across the Antarctic Peninsula: implications for the genesis of calc-alkaline magmas. Earth Planet Sci Lett 46:344–360

    Article  Google Scholar 

  • Scarrow JH, Leat PT, Wareham CD, Millar IL (1998) Geochemistry of mafic dykes in the Antarctic Peninsula continental-margin batholith: a record of arc evolution. Contrib Mineral Petrol 131:289–305

    Article  Google Scholar 

  • Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243

    Article  Google Scholar 

  • Smellie JL (1990) Graham Land and South Shetland Islands. Antarct Res Ser 48:303–312

    Google Scholar 

  • Smellie JL, Pankhurst RJ, Thomson MRA, Davies RES (1984) The geology of the South Shetland Islands: VI. Stratigraphy, geochemistry and evolution. In: British Antarctic Survey, Cambridge, p 85

  • Smellie JL, Pallas R, Sabat F, Zheng X (1996) Age and correlation of volcanism in central Livingston Island, South Shetland Islands: K-Ar and geochemical constraints. J South Am Earth Sci 9:265–272

    Article  Google Scholar 

  • Soliani E, Bonhomme MG (1994) New evidence for Cenozoic resetting of K-Ar ages in volcanic rocks of the northern portion of the Admiralty Bay, King George Island, Antarctica. J South Am Earth Sci 7:85–94

    Article  Google Scholar 

  • Suyehiro K, Takahashi N, Ariie Y, Yokoi Y, Hino R, Shinohara M, Kanazawa T, Hirata N, Tokuyama H, Taira A (1996) Continental Crust, Crustal underplating, and Low-Q Upper Mantle Beneath an Oceanic Island Arc. Science 272:390–392

    Article  Google Scholar 

  • Tamura Y, Gill JB, Tollstrup D, Kawabata H, Shukuno H, Chang Q, Miyazaki T, Takahashi T, Hirahara Y, Kodaira S, Ishizuka O, Suzuki T, Kido Y, Fiske RS, Tatsumi Y (2009) Silicic magmas in the Izu-Bonin oceanic arc and implications for crustal evolution. J Petrol 50:685–723

    Article  Google Scholar 

  • Tanner PWG, Pankhurst RJ, Hyden G (1982) Radiometric evidence for the age of the subduction complex in the South Orkney and South Shetland Islands, West Antarctica. J Geol Soc Lond 139:683–690

    Article  Google Scholar 

  • Tatsumi Y, Shukuno H, Tani K, Takahashi N, Kodaira S, Kogiso T (2008) Structure and growth of the Izu-Bonin-Mariana arc crust: 2. Role of crust-mantle transformation and the transparent Moho in arc crust evolution. J Geophys Resh 113. doi:10.1029/2007JB005121

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Taylor ST, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265

    Article  Google Scholar 

  • Todt W, Cliff RA, Hanser A, Hofmann AW (1996) Evaluation of a 202Pb–205Pb double spike for high-precision lead isotope analysis. Am Geophys Un Geophys Monograph 95:429–437

    Article  Google Scholar 

  • Trouw RAJ, Simoes LSA, Valladares CS (1998) Metamorphic evolution of a subduction complex, South Shetland Islands, Antarctica. J Metamorph Geol 16:475–490

    Article  Google Scholar 

  • Turner S, Hawkesworth C, Rogers N, Bartlett J, Worthington T, Hergt J, Pearce J, Smith I (1997) 238U–230Th disequilibria, magma petrogenesis, and flux rates beneath the depleted Tonga-Kermadec island arc. Geochim Cosmochim Acta 61:4855–4884

    Article  Google Scholar 

  • Vaughan AP, Storey BC (2000) The eastern Palmer Land shear zone: a new terrane accretion model for the Mesozoic development of the Antarctic Peninsula. J Geol Soc Lond 157:1243–1256

    Article  Google Scholar 

  • Wang F, Theng X-S, Lee JIK, Choe WH, Evans N, Zhu R-X (2009) An 40Ar–39Ar geochronology on a mid-Eocene igneous event on the Barton and Weaver peninsulas: implications for the dynamic setting of the Antarctic Peninsula. Geochem Geophys Geosyst 10. doi:10.1029/2009GC002874

  • Weaver BL, Tarney J (1984) Empirical approach to estimating the composition of the continental crust. Nature 310:575–577

    Article  Google Scholar 

  • Weaver SD, Saunders AD, Pankhurst RJ, Tarney J (1979) A geochemical study of magmatism associated with the initial stages of back-arc spreading: the Quaternary volcanics of Bransfield Strait from South Shetland Islands. Contrib Mineral Petrol 68:151–169

    Article  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232

    Article  Google Scholar 

  • Wessel P, Smith WHF (1991) Free software helps map and display data. Eos Trans Am Geophys Union 72:441

    Article  Google Scholar 

  • Wessel P, Smith WHF (1998) New, improved version of the generic mapping tools released. Eos Trans Am Geophys Union 79:579

    Article  Google Scholar 

  • Wever HE, Storey BC (1992) Bimodal magmatism in northeast Palmer Land, Antarctic Peninsula: geochemical evidence for a Jurasic ensialic back-arc basin. Tectonophysics 205:239–259

    Article  Google Scholar 

  • Willan RCR, Hunter MA (2005) Basin evolution during the transition from continental rifting to subduction: Evidence from the lithofacies and modal petrology of the Jurassic Latady Group, Antarctic Peninsula. J South Am Earth Sci 20:171–191

    Article  Google Scholar 

  • Willan RCR, Kelley SP (1999) Mafic dike swarms in the South Shetland Islands volcanic arc: Unravelling multiepisodic magmatism related to subduction and continental rifting. J Geophys Res 104:23051–23068

    Article  Google Scholar 

  • Willan RCR, Pankhurst RJ, Hervé F (1994) A probable Early Triassic age for the Miers Bluff Formation, Livingston Island, South Shetland Islands. Antarct Sci 6:401–408

    Article  Google Scholar 

  • Windley BF, Garde AA (2009) Arc-generated blocks with crustal sections in the North Atlantic craton of West Greenland: crustal growth in the Archean with modern analogues. Earth-Sci Rev 93:1–30

    Article  Google Scholar 

  • Woodhead J, Eggins S, Gamble J (1993) High field strength and transition element systematics in island arc and back-arc basin basalts: evidence for multi-phase melt extraction and a depleted mantle wedge. Earth Planet Sci Lett 114:491–504

    Article  Google Scholar 

  • Yeo JP, Lee JI, Hur SD, Choi B-G (2004) Geochemistry of volcanic rocks in Barton and Weaver peninsulas, King George Island, Antarctica: Implications for arc maturity and correlation with fossilized volcanic centers. Geosci J 8:11–25

    Article  Google Scholar 

Download references

Acknowledgments

The assistance of P. Appel, S. Hauff, B. Mader and A. Weinkauf during the analytical work is gratefully acknowledged. P. van den Bogaard is thanked for the Ar–Ar age determinations. Constructive reviews by P. Leat and an anonymous reviewer are gratefully acknowledged. This work was funded by the Deutsche Forschungsgemeinschaft (DFG grant STO110/41-1 and -2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Haase.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 89 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haase, K.M., Beier, C., Fretzdorff, S. et al. Magmatic evolution of the South Shetland Islands, Antarctica, and implications for continental crust formation. Contrib Mineral Petrol 163, 1103–1119 (2012). https://doi.org/10.1007/s00410-012-0719-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-012-0719-7

Keywords

Navigation