Skip to main content
Log in

Molecular analysis of miscarriage products using multiplex ligation-dependent probe amplification (MLPA): alternative to conventional karyotype analysis

  • General Gynecology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

An Erratum to this article was published on 03 September 2014

Abstract

Purpose

The present study aims to evaluate whether multiplex ligation-dependent probe amplification (MLPA) technique with subtelomeric probes is to be an alternative method of routine G-banding chromosome analysis from pregnancy loss.

Methods

A review of 5 years (from 2005 to 2009) of karyotype for products of conception (POCs) was carried out. From June 2010 to June 2012, MLPA was performed in parallel with karyotype analysis on 347 miscarriages. Karyotyped miscarriages served as controls in this blinded study. Abnormal results were confirmed by fluorescence in situ hybridization.

Results

A review of 5 years of karyotype results for POCs indicated that 11.46 % of cases failed to karyotyping. In the study periods, MLPA results were successfully obtained from all cases including 51 (14.7 %) culture failed cases, chromosomal abnormalities were detected in 27 (52.9 %) of cases which failed to grow or could not be cultivated. It took 3 weeks by conventional karyotyping, but it required at least 24 h and at most a week by MLPA from tissue sampling to final reporting. 47 cases showed discordant results between karyotyping and MLPA because of maternal cell contamination, polyploidy, mosaicism, or balanced translocation.

Conclusions

MLPA technique is relatively low cost, less labor intensive and reduces waiting time with high accuracy compared with conventional cytogenetic analysis. Therefore, MLPA can be the first approach for chromosome analysis from pregnancy loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Steer C, Campbell S, Davies M, Mason B, Collins W (1989) Spontaneous abortion rates after natural and assisted conception. BMJ 299(6711):1317–1318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Rai R, Regan L (2006) Recurrent miscarriage. Lancet 368(9535):601–611

    Article  PubMed  Google Scholar 

  3. Hassold TJ (1980) A cytogenetic study of repeated spontaneous abortions. Am J Hum Genet 32(5):723–730

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Nikcevic AV, Tunkel SA, Kuczmierczyk AR, Nicolaides KH (1999) Investigation of the cause of miscarriage and its influence on women’s psychological distress. Br J Obstet Gynaecol 106(8):808–813

    Article  CAS  PubMed  Google Scholar 

  5. Lomax B, Tang S, Separovic E, Phillips D, Hillard E, Thomson T, Kalousek DK (2000) Comparative genomic hybridization in combination with flow cytometry improves results of cytogenetic analysis of spontaneous abortions. Am J Hum Genet 66(5):1516–1521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Donaghue C, Mann K, Docherty Z, Mazzaschi R, Fear C, Ogilvie C (2010) Combined QF-PCR and MLPA molecular analysis of miscarriage products: an efficient and robust alternative to karyotype analysis. Prenat Diagn 30(2):133–137

    Article  PubMed  Google Scholar 

  7. Benkhalifa M, Kasakyan S, Clement P, Baldi M, Tachdjian G, Demirol A, Gurgan T, Fiorentino F, Mohammed M, Qumsiyeh MB (2005) Array comparative genomic hybridization profiling of first-trimester spontaneous abortions that fail to grow in vitro. Prenat Diagn 25(10):894–900

    Article  CAS  PubMed  Google Scholar 

  8. Bell KA, Van Deerlin PG, Haddad BR, Feinberg RF (1999) Cytogenetic diagnosis of “normal 46, XX” karyotypes in spontaneous abortions frequently may be misleading. Fertil Steril 71(2):334–341

    Article  CAS  PubMed  Google Scholar 

  9. Fritz B, Hallermann C, Olert J, Fuchs B, Bruns M, Aslan M, Schmidt S, Coerdt W, Muntefering H, Rehder H (2001) Cytogenetic analyses of culture failures by comparative genomic hybridisation (CGH)-re-evaluation of chromosome aberration rates in early spontaneous abortions. Eur J Hum Genet 9(7):539–547

    Article  CAS  PubMed  Google Scholar 

  10. Doria S, Carvalho F, Ramalho C, Lima V, Francisco T, Machado AP, Brandao O, Sousa M, Matias A, Barros A (2009) An efficient protocol for the detection of chromosomal abnormalities in spontaneous miscarriages or foetal deaths. Eur J Obstet Gynecol Reprod Biol 147(2):144–150

    Article  CAS  PubMed  Google Scholar 

  11. Mann K, Donaghue C, Fox SP, Docherty Z, Ogilvie CM (2004) Strategies for the rapid prenatal diagnosis of chromosome aneuploidy. Eur J Hum Genet 12(11):907–915

    Article  CAS  PubMed  Google Scholar 

  12. Schaeffer AJ, Chung J, Heretis K, Wong A, Ledbetter DH, Lese Martin C (2004) Comparative genomic hybridization-array analysis enhances the detection of aneuploidies and submicroscopic imbalances in spontaneous miscarriages. Am J Hum Genet 74(6):1168–1174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 30(12):e57

    Article  PubMed Central  PubMed  Google Scholar 

  14. Goddijn M, Leschot NJ (2000) Genetic aspects of miscarriage. Baillieres Best Pract Res Clin Obstet Gynaecol 14(5):855–865

    Article  CAS  PubMed  Google Scholar 

  15. Bruno DL, Burgess T, Ren H, Nouri S, Pertile MD, Francis DI, Norris F, Kenney BK, Schouten J, Andy Choo KH, Slater HR (2006) High-throughput analysis of chromosome abnormality in spontaneous miscarriage using an MLPA subtelomere assay with an ancillary FISH test for polyploidy. Am J Med Genet A 140(24):2786–2793

    Article  PubMed  Google Scholar 

  16. Diego-Alvarez D, Rodriguez de Alba M, Cardero-Merlo R, Diaz-Recasens J, Ayuso C, Ramos C, Lorda-Sanchez I (2007) MLPA as a screening method of aneuploidy and unbalanced chromosomal rearrangements in spontaneous miscarriages. Prenat Diagn 27(8):765–771

    Article  CAS  PubMed  Google Scholar 

  17. Simoni G, Brambati B, Danesino C, Rossella F, Terzoli GL, Ferrari M, Fraccaro M (1983) Efficient direct chromosome analyses and enzyme determinations from chorionic villi samples in the first trimester of pregnancy. Hum Genet 63(4):349–357

    Article  CAS  PubMed  Google Scholar 

  18. Northrop EL, Ren H, Bruno DL, McGhie JD, Coffa J, Schouten J, Choo KH, Slater HR (2005) Detection of cryptic subtelomeric chromosome abnormalities and identification of anonymous chromatin using a quantitative multiplex ligation-dependent probe amplification (MLPA) assay. Hum Mutat 26(5):477–486

    Article  CAS  PubMed  Google Scholar 

  19. Eiben B, Bartels I, Bahr-Porsch S, Borgmann S, Gatz G, Gellert G, Goebel R, Hammans W, Hentemann M, Osmers R et al (1990) Cytogenetic analysis of 750 spontaneous abortions with the direct-preparation method of chorionic villi and its implications for studying genetic causes of pregnancy wastage. Am J Hum Genet 47(4):656–663

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Boormans EM, Birnie E, Oepkes D, Galjaard RJ, Schuring-Blom GH, van Lith JM (2010) Comparison of multiplex ligation-dependent probe amplification and karyotyping in prenatal diagnosis. Obstet Gynecol 115(2 Pt 1):297–303

    Article  PubMed  Google Scholar 

  21. Leschot NJ, Schuring-Blom GH, Van Prooijen-Knegt AC, Verjaal M, Hansson K, Wolf H, Kanhai HH, Van Vugt JM, Christiaens GC (1996) The outcome of pregnancies with confined placental chromosome mosaicism in cytotrophoblast cells. Prenat Diagn 16(8):705–712

    Article  CAS  PubMed  Google Scholar 

  22. Menasha J, Levy B, Hirschhorn K, Kardon NB (2005) Incidence and spectrum of chromosome abnormalities in spontaneous abortions: new insights from a 12-year study. Genet Med 7(4):251–263

    Article  PubMed  Google Scholar 

  23. Deshpande M, Harper J, Holloway M, Palmer R, Wang R (2010) Evaluation of array comparative genomic hybridization for genetic analysis of chorionic villus sampling from pregnancy loss in comparison to karyotyping and multiplex ligation-dependent probe amplification. Genet Test Mol Biomark 14(3):421–424

    Article  CAS  Google Scholar 

  24. Carvalho B, Doria S, Ramalho C, Brandao O, Sousa M, Matias A, Barros A, Carvalho F (2010) Aneuploidies detection in miscarriages and fetal deaths using multiplex ligation-dependent probe amplification: an alternative for speeding up results? Eur J Obstet Gynecol Reprod Biol 153(2):151–155

    Article  PubMed  Google Scholar 

  25. McClelland LS, Allen SK, Larkins SA, Hamilton SJ, Marton T, Cox PM, Hargitai B, Johnston EH, Morgan C, Hardy G (2011) Implementation and experience of an alternative QF-PCR and MLPA diagnostic strategy to detect chromosomal abnormalities in fetal and neonatal pathology samples. Pediatr Dev Pathol 14(6):460–468

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0093821).

Conflict of interest

All authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Han Shim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.W., Lyu, S.W., Sung, S.R. et al. Molecular analysis of miscarriage products using multiplex ligation-dependent probe amplification (MLPA): alternative to conventional karyotype analysis. Arch Gynecol Obstet 291, 347–354 (2015). https://doi.org/10.1007/s00404-014-3403-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-014-3403-5

Keywords

Navigation