Skip to main content

Advertisement

Log in

Premature termination of SMARCB1 translation may be followed by reinitiation in schwannomatosis-associated schwannomas, but results in absence of SMARCB1 expression in rhabdoid tumors

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

In schwannomatosis, germline SMARCB1 mutations predispose to the development of multiple schwannomas, but not vestibular schwannomas. Many of these are missense or splice-site mutations or in-frame deletions, which are presumed to result in the synthesis of altered SMARCB1 proteins. However, also nonsense and frameshift mutations, which are characteristic for rhabdoid tumors and are predicted to result in the absence of SMARCB1 protein via nonsense-mediated mRNA decay, have been reported in schwannomatosis patients. We investigated the consequences of four of the latter mutations, i.e. c.30delC, c.34C>T, c.38delA, and c.46A>T, all in SMARCB1-exon 1. We could demonstrate for the c.30delC and c.34C>T mutations that the respective mRNAs were still present in the schwannomas of the patients. We hypothesized that these were prevented from degradation by translation reinitiation at the AUG codon encoding methionine at position 27 of the SMARCB1 protein. To test this, we expressed the mutations in MON cells, rhabdoid cells without endogenous SMARCB1 protein, and found that all four resulted in synthesis of the N-terminally truncated protein. Mutation of the reinitiation methionine codon into a valine codon prevented synthesis of the truncated protein, thereby confirming its identity. Immunohistochemistry with a SMARCB1 antibody revealed a mosaic staining pattern in schwannomas of the patients with the c.30delC and c.34C>T mutations. Our findings support the concept that, in contrast to the complete absence of SMARCB1 expression in rhabdoid tumors, altered SMARCB1 proteins with modified activity and reduced (mosaic) expression are formed in the schwannomas of schwannomatosis patients with a germline SMARCB1 mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Biegel JA, Zhou JY, Rorke LB, Stenstrom C, Wainwright LM, Fogelgren B (1999) Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res 59:74–79

    CAS  PubMed  Google Scholar 

  2. Bourdeaut F, Fréneaux P, Thuille B, Lellouch-Tubiana A, Nicolas A, Couturier J, Pierron G, Sainte-Rose C, Bergeron C, Bouvier R, Rialland X, Laurence V, Michon J, Sastre-Garau X, Delattre O (2007) hSNF5/INI1-deficient tumours and rhabdoid tumours are convergent but not fully overlapping entities. J Pathol 211:323–330

    Article  CAS  PubMed  Google Scholar 

  3. Bourdeaut F, Lequin D, Brugières L, Reynaud S, Dufour C, Doz F, André N, Stephan JL, Pérel Y, Oberlin O, Orbach D, Bergeron C, Rialland X, Fréneaux P, Ranchere D, Figarella-Branger D, Audry G, Puget S, Evans DG, Pinas JC, Capra V, Mosseri V, Coupier I, Gauthier-Villars M, Pierron G, Delattre O (2011) Frequent hSNF5/INI1 germline mutations in patients with rhabdoid tumor. Clin Cancer Res 17:31–38

    Article  CAS  PubMed  Google Scholar 

  4. Bruder CE, Dumanski JP, Kedra D (1999) The mouse ortholog of the human SMARCB1 gene encodes two splice forms. Biochem Biophys Res Commun 257:886–890

    Article  CAS  PubMed  Google Scholar 

  5. Buisson M, Anczuków O, Zetoune AB, Ware MD, Mazoyer S (2006) The 185delAG mutation (c.68_69delAG) in the BRCA1 gene triggers translation reinitiation at a downstream AUG codon. Hum Mutat 27:1024–1029

    Article  CAS  PubMed  Google Scholar 

  6. Eaton KW, Tooke LS, Wainwright LM, Judkins AR, Biegel JA (2011) Spectrum of SMARCB1/INI1 mutations in familial and sporadic rhabdoid tumors. Pediatr Blood Cancer 56:7–15

    Article  PubMed Central  PubMed  Google Scholar 

  7. Eelloo JA, Evans DGR, Grgory JJ, Whitehouse RW, Soh C, Bowers N, Hulse P, Wylie JP, Clarke NW, Ealing J. A complex case of three primary malignancies associated with a SMARCB1 mutation, Abstract, Children’s Tumor Foundation Conference, 8–11 June 2013, Monterey, CA, p 78

  8. Hadfield KD, Newman WG, Bowers NL, Wallace A, Bolger C, Colley A, McCann E, Trump D, Prescott T, Evans DG (2008) Molecular characterisation of SMARCB1 and NF2 in familial and sporadic schwannomatosis. J Med Genet 45:332–339

    Article  CAS  PubMed  Google Scholar 

  9. Hasselblatt M, Isken S, Linge A, Eikmeier K, Jeibmann A, Oyen F, Nagel I, Richter J, Bartelheim K, Kordes U, Schneppenheim R, Frühwald M, Siebert R, Paulus W (2013) High-resolution genomic analysis suggests the absence of recurrent genomic alterations other than SMARCB1 aberrations in atypical teratoid/rhabdoid tumors. Genes Chromosom Cancer 52:185–190

    Article  CAS  PubMed  Google Scholar 

  10. Hoot AC, Russo P, Judkins AR, Perlman EJ, Biegel JA (2004) Immunohistochemical analysis of hSNF5/INI1 distinguishes renal and extra-renal malignant rhabdoid tumors from other pediatric soft tissue tumors. Am J Surg Pathol 28:1485–1491

    Article  PubMed  Google Scholar 

  11. Hulsebos TJ, Plomp AS, Wolterman RA, Robanus-Maandag EC, Baas F, Wesseling P (2007) Germline mutation of INI1/SMARCB1 in familial schwannomatosis. Am J Hum Genet 80:805–810

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Hulsebos TJ, Kenter S, Siebers-Renelt U, Hans V, Wesseling P, Flucke U (2014) SMARCB1 involvement in the development of leiomyoma in a patient with schwannomatosis. Am J Surg Pathol 38:421–425

    Article  PubMed  Google Scholar 

  13. Kadoch C, Crabtree GR (2013) Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell 28(153):71–85

    Article  Google Scholar 

  14. Kordes U, Gesk S, Frühwald MC, Graf N, Leuschner I, Hasselblatt M, Jeibmann A, Oyen F, Peters O, Pietsch T, Siebert R, Schneppenheim R (2010) Clinical and molecular features in patients with atypical teratoid rhabdoid tumor or malignant rhabdoid tumor. Genes Chromosom Cancer 49:176–181

    CAS  PubMed  Google Scholar 

  15. Kozak M (2001) Constraints on reinitiation of translation in mammals. Nucleic Acids Res 29:5226–5232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Luukkonen BG, Tan W, Schwartz S (1995) Efficiency of reinitiation of translation on human immunodeficiency virus type 1 mRNAs is determined by the length of the upstream open reading frame and by intercistronic distance. J Virol 69:4086–4094

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Nagy E, Maquat LE (1998) A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem Sci 23:198–199

    Article  CAS  PubMed  Google Scholar 

  18. Patil S, Perry A, Maccollin M, Dong S, Betensky RA, Yeh TH, Gutmann DH, Stemmer-Rachamimov AO (2008) Immunohistochemical analysis supports a role for INI1/SMARCB1 in hereditary forms of schwannomas, but not in solitary, sporadic schwannomas. Brain Pathol 18:517–519

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Paulsen M, Lund C, Akram Z, Winther JR, Horn N, Møller LB (2006) Evidence that translation reinitiation leads to a partially functional Menkes protein containing two copper-binding sites. Am J Hum Genet 79:214–229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Pedersen AG, Nielsen H (1997) Neural network prediction of translation initiation sites in eukaryotes: perspectives for EST and genome analysis. ISMB 5:226–233

    CAS  PubMed  Google Scholar 

  21. Piotrowski A, Xie J, Liu YF, Poplawski AB, Gomes AR, Madanecki P, Fu C, Crowley MR, Crossman DK, Armstrong L, Babovic-Vuksanovic D, Bergner A, Blakeley JO, Blumenthal AL, Daniels MS, Feit H, Gardner K, Hurst S, Kobelka C, Lee C, Nagy R, Rauen KA, Slopis JM, Suwannarat P, Westman JA, Zanko A, Korf BR, Messiaen LM (2014) Germline loss-of-function mutations in LZTR1 predispose to an inherited disorder of multiple schwannomas. Nat Genet 46:182–187

    Article  CAS  PubMed  Google Scholar 

  22. Plotkin SR, Blakeley JO, Evans DG, Hanemann CO, Hulsebos TJ, Hunter-Schaedle K, Kalpana GV, Korf B, Messiaen L, Papi L, Ratner N, Sherman LS, Smith MJ, Stemmer-Rachamimov AO, Vitte J, Giovannini M (2013) Update from the 2011 International Schwannomatosis Workshop: from genetics to diagnostic criteria. Am J Med Genet A 161:405–416

    Article  Google Scholar 

  23. Rousseau G, Noguchi T, Bourdon V, Sobol H, Olschwang S (2011) SMARCB1/INI1 germline mutations contribute to 10% of sporadic schwannomatosis. BMC Neurol 11:9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Sévenet N, Lellouch-Tubiana A, Schofield D, Hoang-Xuan K, Gessler M, Birnbaum D, Jeanpierre C, Jouvet A, Delattre O (1999) Spectrum of hSNF5/INI1 somatic mutations in human cancer and genotype-phenotype correlations. Hum Mol Genet 8:2359–2368

    Article  PubMed  Google Scholar 

  25. Smith MJ, Walker JA, Shen Y, Stemmer-Rachamimov A, Gusella JF, Plotkin SR (2012) Expression of SMARCB1 (INI1) mutations in familial schwannomatosis. Hum Mol Genet 21:5239–5245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Smith MJ, Wallace AJ, Bowers NL, Rustad CF, Woods CG, Leschziner GD, Ferner RE, Evans DG (2012) Frequency of SMARCB1 mutations in familial and sporadic schwannomatosis. Neurogenetics 13:141–145

    Article  CAS  PubMed  Google Scholar 

  27. Stump MR, Gong Q, Zhou Z (2013) LQT2 nonsense mutations generate trafficking defective NH2-terminally truncated channels by the reinitiation of translation. Am J Physiol Heart Circ Physiol 305:H1397–H1404

    CAS  PubMed  Google Scholar 

  28. Versteege I, Sévenet N, Lange J, Rousseau-Merck MF, Ambros P, Handgretinger R, Aurias A, Delattre O (1998) Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394:203–206

    Article  CAS  PubMed  Google Scholar 

  29. Wilson BG, Roberts CW (2011) SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer 11:481–492

    Article  CAS  PubMed  Google Scholar 

  30. Zhang J, Maquat LE (1997) Evidence that translation reinitiation abrogates nonsense-mediated mRNA decay in mammalian cells. EMBO J 16:826–833

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof Dr. Olivier Delattre (Institut Curie, Paris, France) for his kind gift of MON cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theo J. M. Hulsebos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hulsebos, T.J.M., Kenter, S., Verhagen, W.I.M. et al. Premature termination of SMARCB1 translation may be followed by reinitiation in schwannomatosis-associated schwannomas, but results in absence of SMARCB1 expression in rhabdoid tumors. Acta Neuropathol 128, 439–448 (2014). https://doi.org/10.1007/s00401-014-1281-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-014-1281-3

Keywords

Navigation