Skip to main content
Log in

Schulze-Hardy rule revisited

  • Perspectives
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The classical Schulze-Hardy rule suggests that the critical coagulation concentration (CCC) decreases as the inverse sixth power of the counterion valence. While this dependence can be derived from the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO), this derivation relies on unrealistic assumptions. In particular, one cannot assume that the electrolytes are symmetric, since one normally works with the better soluble asymmetric electrolytes. For such electrolytes, however, it is essential to distinguish between multivalent counterions and coions. For multivalent counterions, one must consider their strong tendency towards adsorption to the oppositely charged substrates, which leads to low charge densities. In this situation, the CCC increases with the surface charge density, inducing the strong decrease of the CCC with valence. For multivalent coions, the substrates are typically highly charged. In this case, the CCC decreases with increasing ionic valence and is in fact inversely proportional to the valence. This dependence is referred to as the inverse Schulze-Hardy rule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Derjaguin B, Landau LD (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Phys Chim 14:633–662. https://doi.org/10.1016/0079-6816(93)90013-L

    Article  Google Scholar 

  2. Verwey EJW, Overbeek JTG (1948) Theory of stability of lyophobic colloids. Elsevier, Amsterdam

    Google Scholar 

  3. Russel WB, Saville DA, Schowalter WR (1989) Colloidal Dispersions. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Schulze H (1882) Schwefelarsen in wässriger Lösung. J Prakt Chem 25:431–452. https://doi.org/10.1002/prac.18820250142

    Article  Google Scholar 

  5. Hardy WB (1900) A preliminary investigation of the conditions which determine the stability of irreversible hydrosols. Proc Roy Soc London 66:110–125. https://doi.org/10.1098/rspl.1899.0081

    Article  Google Scholar 

  6. Frens G, Heuts JJFG (1988) The double layer potential as a rate determining factor in the coagulation of electrocratic colloids. Colloids Surf A Physicochem Eng Asp 30:295–305. https://doi.org/10.1016/0166-6622(88)80132-X

    Article  CAS  Google Scholar 

  7. Metcalfe IM, Healy TW (1990) Charge regulation modeling of the Schulze-Hardy rule and related coagulation effects. Faraday Discuss. 335–344. https://doi.org/10.1039/DC9909000335

  8. Sinha P, Szilagyi I, Montes Ruiz-Cabello FJ, Maroni P, Borkovec M (2013) Attractive forces between charged colloidal particles induced by multivalent ions revealed by confronting aggregation and direct force measurements. J Phys Chem Lett 4:648–652. https://doi.org/10.1021/jz4000609

    Article  CAS  PubMed  Google Scholar 

  9. Rosenholm JB, Nylund J, Stenlund B (1999) Synthesis and characterization of cationized latexes in dilute suspensions. Colloids Surf A Physicochem Eng Asp 159:209–218. https://doi.org/10.1016/S0927-7757(99)00175-2

    Article  CAS  Google Scholar 

  10. Schneider C, Hanisch M, Wedel B, Jusufi A, Ballauff M (2011) Experimental study of electrostatically stabilized colloidal particles: colloidal stability and charge reversal. J Colloid Interface Sci 358:62–67. https://doi.org/10.1016/j.jcis.2011.02.039

    Article  CAS  PubMed  Google Scholar 

  11. Szilagyi I, Polomska A, Citherlet D, Sadeghpour A, Borkovec M (2013) Charging and aggregation of negatively charged colloidal latex particles in presence of multivalent polyamine cations. J Colloid Interface Sci 392:34–41. https://doi.org/10.1016/j.jcis.2012.09.058

    Article  CAS  PubMed  Google Scholar 

  12. Oncsik T, Trefalt G, Csendes Z, Szilagyi I, Borkovec M (2014) Aggregation of negatively charged colloidal particles in the presence of multivalent cations. Langmuir 30:733–741. https://doi.org/10.1021/la4046644

    Article  CAS  PubMed  Google Scholar 

  13. Montes Ruiz-Cabello FJ, Trefalt G, Csendes Z, Sinha P, Oncsik T, Szilagyi I, Maroni P, Borkovec M (2013) Predicting aggregation rates of colloidal particles from direct force measurements. J Phys Chem B 117:11853–11862. https://doi.org/10.1021/jp406061f

    Article  CAS  Google Scholar 

  14. Trefalt G, Szilagyi I, Tellez G, Borkovec M (2017) Colloidal stability in asymmetric electrolytes: modifications of the Schulze-Hardy rule. Langmuir 33:1695–1704. https://doi.org/10.1021/acs.langmuir.6b04464

    Article  CAS  PubMed  Google Scholar 

  15. Cao T, Szilagyi I, Oncsik T, Borkovec M, Trefalt G (2015) Aggregation of colloidal particles in the presence of multivalent co-ions: the inverse Schulze−Hardy rule. Langmuir 31:6610–6614. https://doi.org/10.1021/acs.langmuir.5b01649

    Article  CAS  PubMed  Google Scholar 

  16. Behrens SH, Christl DI, Emmerzael R, Schurtenberger P, Borkovec M (2000) Charging and aggregation properties of carboxyl latex particles: experiments versus DLVO theory. Langmuir 16:2566–2575

    Article  CAS  Google Scholar 

  17. Cao T, Sugimoto T, Szilagyi I, Trefalt G, Borkovec M (2017) Heteroaggregation of oppositely charged particles in the presence of multivalent ions. Phys Chem Chem Phys 19:15160–15171

    Article  CAS  Google Scholar 

  18. Reerink H, Overbeek JTG (1954) The rate of coagulation as a measure of the stability of silver iodide sols. Discuss Faraday Soc 74-84. https://doi.org/10.1039/DF9541800074

  19. Trefalt G, Szilagyi I, Borkovec M (2013) Poisson-Boltzmann description of interaction forces and aggregation rates involving charged colloidal particles in asymmetric electrolytes. J Colloid Interface Sci 406:111–120. https://doi.org/10.1016/j.jcis.2013.05.071

    Article  CAS  PubMed  Google Scholar 

  20. Samaj L, Trizac E (2015) Effective charge of cylindrical and spherical colloids immersed in an electrolyte: the quasi-planar limit. J Phys A 48: https://doi.org/10.1088/1751-8113/48/26/265003

  21. Tellez G (2011) Nonlinear screening of charged macromolecules. Phil Trans R Soc A 369:322–334. https://doi.org/10.1098/rsta.2010.0256

    Article  CAS  PubMed  Google Scholar 

  22. Trefalt G (2016) Derivation of the inverse Schulze-Hardy rule. Phys Rev E 93:032612. https://doi.org/10.1103/PhysRevE.93.032612

    Article  CAS  PubMed  Google Scholar 

  23. Zohar O, Leizerson I, Sivan U (2006) Short range attraction between two similarly charged silica surfaces. Phys Rev Lett 96:177802. https://doi.org/10.1103/PhysRevLett.96.177802

    Article  CAS  PubMed  Google Scholar 

  24. Oncsik T, Trefalt G, Borkovec M, Szilagyi I (2015) Specific ion effects on particle aggregation induced by monovalent salts within the Hofmeister series. Langmuir 31:3799–3807. https://doi.org/10.1021/acs.langmuir.5b00225

    Article  CAS  PubMed  Google Scholar 

  25. Oncsik T, Desert A, Trefalt G, Borkovec M, Szilagyi I (2016) Charging and aggregation of latex particles in aqueous solutions of ionic liquids: towards an extended Hofmeister series. Phys Chem Chem Phys 18:7511–7520. https://doi.org/10.1039/c5cp07238g

    Article  CAS  PubMed  Google Scholar 

  26. Lo Nostro P, Ninham BW (2012) Hofmeister phenomena: an update on ion specificity in biology. Chem Rev 112:2286–2322. https://doi.org/10.1021/cr200271j

    Article  CAS  PubMed  Google Scholar 

  27. Sverjensky DA (2006) Prediction of the speciation of alkaline earths adsorbed on mineral surfaces in salt solutions. Geochim Cosmochim Acta 70:2427–2453

    Article  CAS  Google Scholar 

  28. Rahnemaie R, Hiemstra T, van Riemsdijk WH (2007) Geometry, charge, distribution and surface speciation of phosphate on goethite. Langmuir 23:3680–3689. https://doi.org/10.1021/la062965n

    Article  CAS  PubMed  Google Scholar 

  29. Raafatnia S, Hickey OA, Sega M, Holm C (2014) Computing the electrophoretic mobility of large spherical colloids by combining explicit ion simulations with the standard electrokinetic model. Langmuir 30:1758–1767. https://doi.org/10.1021/la4039528

    Article  CAS  PubMed  Google Scholar 

  30. Labbez C, Jonsson B, Skarba M, Borkovec M (2009) Ion-ion correlation and charge reversal at titrating solid interfaces. Langmuir 25:7209–7213. https://doi.org/10.1021/la900853e

    Article  CAS  PubMed  Google Scholar 

  31. Freundlich H (1910) Die Bedeutung der Adsorption bei der Fällung der Suspensionskolloide. Z Chemie Industrie Kolloide 7:193–195. https://doi.org/10.1007/BF01510141

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation, University of Geneva, and the Hungarian Academy of Sciences through the Lendület program (grant 96130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Borkovec.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trefalt, G., Szilágyi, I. & Borkovec, M. Schulze-Hardy rule revisited. Colloid Polym Sci 298, 961–967 (2020). https://doi.org/10.1007/s00396-020-04665-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04665-w

Keywords

Navigation