Skip to main content
Log in

Synthesis and properties of novel branched polyether as demulsifiers for polymer flooding

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A novel branched polyether is prepared with 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane as a core, amino groups as backbone, and polypropylene oxide (PPO)–polyethylene oxide (PEO) chains as branches based on phenol-amine resin, propylene oxide (PO), and ethylene oxide (EO). The surface activity is investigated by surface tension measurement at different temperature. The increase in PO/EO ratio or PPO chain lengths improve the surface activity and decrease the critical micelle concentration (cmc) as well as increase the temperature. The addition of inorganic salts causes a slight increase in cmc. The demulsification of water-in-crude-oil (W/O) emulsions, whether from polymer flooding or not, shows that the branched polyether is a good demulsifier to break the W/O emulsions. The stability of W/O emulsion in the presence of polyether shows that the highest water dehydration is not necessarily the highest stability index of W/O emulsion due to the turbidity of separated water. The demulsification process is also observed by microscope. Distribution of the polyether after demulsification is evaluated by partition coefficient at various concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Nguyen D, Balsamo V, Phan J (2014) Effect of diluents and asphaltenes on interfacial properties and steam-assisted gravity drainage emulsion stability: interfacial rheology and wettability. Energy Fuels 28:1641–1651

    Article  CAS  Google Scholar 

  2. Perino A, Noïk C, Dalmazzone C (2013) Effect of fumed silica particles on water-in-crude oil emulsion: emulsion stability, interfacial properties, and contribution of crude oil fractions. Energy Fuels 27:2399–2412

    Article  CAS  Google Scholar 

  3. Kralova I, Sjöblom J, Øye G, Simon S, Grimes BA, Paso K (2011) Heavy crude oils/particle stabilized emulsions. Adv Colloid Interface Sci 169:106–127

    Article  CAS  Google Scholar 

  4. Deng S, Yu G, Jiang Z, Zhang R, Ting YP (2005) Destabilization of oil droplets in produced water from ASP flooding. Colloids Surf, A 252:113–119

    Article  CAS  Google Scholar 

  5. Wu X (2002) Investigating the stability mechanism of water-in-diluted bitumen emulsions through isolation and characterization of the stabilizing materials at the interface. Energy Fuels 17:179–190

    Article  Google Scholar 

  6. Gao C, Shi J, Zhao F (2014) Successful polymer flooding and surfactant-polymer flooding projects at Shengli Oilfield from 1992 to 2012. J Petrol Explor Prod Technol 4:1–8

    Article  Google Scholar 

  7. Jung JC, Zhang K, Chon BH, Choi HJ (2013) Rheology and polymer flooding characteristics of partially hydrolyzed polyacrylamide for enhanced heavy oil recovery. J Appl Polym Sci 127:4833–4839

    Article  CAS  Google Scholar 

  8. Yang Q, Xin X, Wang L, Lu H, Ren H, Tan Y, Xu G (2014) Modification of the stability of oil-in-water nano-emulsions by polymers with different structures. Colloid Polym Sci 292:1297–1306

    Article  CAS  Google Scholar 

  9. Qiu J (2013) Stability of the oil–water emulsion formed during amphiphilic polymer flooding. J Pet Sci Technol 31:142–147

    Article  CAS  Google Scholar 

  10. Qu G, Gong X, Liu Y (2014) New research progress of the demulsification of produced liquid by polymer flooding. J Chem Pharm Res 6:634–640

    CAS  Google Scholar 

  11. Xie Y, Yan F, Yan Z, Zhang J, Li J (2012) Demulsification and interfacial properties of crosslinking phenol-amine resin block polyether demulsifiers. J Dispersion Sci Technol 33:1674–1681

    Article  CAS  Google Scholar 

  12. Xu Y, Wu J, Dabros T, Hamza H, Venter J (2005) Optimizing the polyethylene oxide and polypropylene oxide contents in diethylenetriamine-based surfactants for destabilization of a water-in-oil emulsion. Energy Fuels 19:916–921

    Article  CAS  Google Scholar 

  13. Kailey I, Feng X (2013) Influence of structural variations of demulsifiers on their performance. Ind Eng Chem Res 52:785–793

    Article  CAS  Google Scholar 

  14. Cooper DG, Zajic JE, Cannel EJ, Wood JW (1980) The relevance of “HLB” to de-emulsification of a mixture of heavy oil, water and clay. Can J Chem Eng 58:576–579

    Article  CAS  Google Scholar 

  15. Zaki NN, Abdel-Raouf ME, Abdel-Azim AAA (1996) Propylene oxide-ethylene oxide block copolymers as demulsifiers for water-in-oil emulsions. I. Effect of molecular weight and hydrophilic-lipophilic balance on the demulsification efficiency. Monatsh Chem 127:621–629

    Article  CAS  Google Scholar 

  16. Fan Y, Simon SB, Sjöblom J (2009) Chemical destabilization of crude oil emulsions: effect of nonionic surfactants as emulsion inhibitors. Energy Fuels 23:4575–4583

    Article  CAS  Google Scholar 

  17. Atta AM, Fadda AA, Abdel-Rahman AAH, Ismail HS, Fouad RR (2012) Application of new modified poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) copolymers as demulsifier for petroleum crude oil emulsion. J Dispersion Sci Technol 33:775–785

    Article  CAS  Google Scholar 

  18. Wu J, Xu Y, Dabros T, Hamza H (2005) Effect of EO and PO positions in nonionic surfactants on surfactant properties and demulsification performance. Colloids Surf, A 252:79–85

    Article  CAS  Google Scholar 

  19. Daniel-David D, Pezron I, Dalmazzone C, Noïk C, Clausse D, Komunjer L (2005) Elastic properties of crude oil/water interface in presence of polymeric emulsion breakers. Colloids Surf, A 270–271:257–262

    Article  Google Scholar 

  20. Staiss F, Boehm R, Kupfer R (1991) Improved demulsifier chemistry. A novel approach in the dehydration of crude oil. SPE Prod Eng 6:334–334

    Article  CAS  Google Scholar 

  21. A Abdel-Azim A-A, Zaki NN, Maysour NES (1998) Polyoxyalkylenated amines for breaking water-in-oil emulsions: effect of structural variations on the demulsification efficiency. Polym Adv Technol 9:159–166

    Article  Google Scholar 

  22. Rosen M (1972) The relationship of structure to properties in surfactants. J Am Oil Chem Soc 49:293–297

    Article  CAS  Google Scholar 

  23. Zhang Z, Xu G, Wang F, Dong S, Chen Y (2005) Demulsification by amphiphilic dendrimer copolymers. J Colloid Interface Sci 282:1–4

    Article  CAS  Google Scholar 

  24. Al-Sabagh AM, Kandile NG, Noor El-Din MR (2011) Functions of demulsifiers in the petroleum industry. Sep Sci Technol 46:1144–1163

    Article  CAS  Google Scholar 

  25. Zaki NN, Abdel-Raouf ME, Abdel-Azim A-AA (1996) Polyoxyethylenated bisphenol-A for breaking water-in-oil emulsions. Polym Adv Technol 7:805–808

    Article  CAS  Google Scholar 

  26. Zhang Z, Xu GY, Wang F, Dong SL, Li YM (2004) Characterization and demulsification of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) copolymers. J Colloid Interface Sci 277:464–470

    Article  CAS  Google Scholar 

  27. Al-Sabagh AM, Noor El-Din MR, Morsi RE, Elsabee MZ (2008) Demulsification efficiency of some novel styrene/maleic anhydride ester copolymers. J Appl Polym Sci 108:2301–2311

    Article  CAS  Google Scholar 

  28. Li Simon MK (1991) Process for preparing tetraphenolic compounds. US Patent 5,012,016, 30 Apr 1991

  29. Zhai X, Xu G, Chen Y, Liu T, Zhang J, Yuan J, Tan Y, Zhang J (2013) Effect of inorganic salts on the aggregation behavior of branched block polyether at air/water and n-heptane/water interfaces. Colloid Polym Sci 291:2825–2836

    Article  CAS  Google Scholar 

  30. Gong H, Xu G, Ding H, Shi X, Tan Y (2009) Aggregation behavior of block polyethers with branched structure at air/water surface. Eur Polym J 45:2540–2548

    Article  CAS  Google Scholar 

  31. Kositza MJ, Bohne C, Alexandridis P, Hatton TA, Holzwarth JF (1999) Micellization dynamics and impurity solubilization of the block-copolymer L64 in an aqueous solution. Langmuir 15:322–325

    Article  CAS  Google Scholar 

  32. Nordon A, Meunier C, Carr RH, Gemperline PJ, Littlejohn D (2002) Determination of the ethylene oxide content of polyether polyols by low-field 1H nuclear magnetic resonance spectrometry. Anal Chim Acta 472:133–140

    Article  CAS  Google Scholar 

  33. Sanan R, Mahajan RK (2013) Polyethylene glycol assisted micellar, interfacial and phase separation studies of triblock copolymer–nonionic surfactant mixtures. Colloids Surf, A 433:145–153

    Article  CAS  Google Scholar 

  34. Rub MA, Asiri AM, Azum N, Khan A, Khan AAP, Khan SB, Rahman MM, Kabir ud D (2013) Aggregation and phase separation behavior of an amphiphilic drug promazine hydrochloride under the influence of inorganic salts and ureas. Thermochim Acta 574:26–37

    Article  CAS  Google Scholar 

  35. Varade D, Sharma R, Aswal VK, Goyal PS, Bahadur P (2004) Effect of hydrotropes on the solution behavior of PEO/PPO/PEO block copolymer L62 in aqueous solutions. Eur Polym J 40:2457–2464

    Article  CAS  Google Scholar 

  36. Patel T, Bahadur P, Mata J (2010) The clouding behaviour of PEO–PPO based triblock copolymers in aqueous ionic surfactant solutions: a new approach for cloud point measurements. J Colloid Interface Sci 345:346–350

    Article  CAS  Google Scholar 

  37. JM Barad, M Chakraborty, H-J r Bart (2010) Stability and performance study of water-in-oil-in-water emulsion: extraction of aromatic amines. Ind. Eng. Chem. Res 49:5808–5815

  38. Kang W, Xu B, Wang Y, Li Y, Shan X, An F, Liu J (2011) Stability mechanism of W/O crude oil emulsion stabilized by polymer and surfactant. Colloids Surf, A 384:555–560

    Article  CAS  Google Scholar 

  39. Kaombe DD, Lenes M, Toven K, Glomm WR (2013) Turbiscan as a tool for studying the phase separation tendency of pyrolysis oil. Energy Fuels 27:1446–1452

    Article  CAS  Google Scholar 

  40. Xu B, Kang W, Meng L, Yang R, Liu S, Zhang L (2013) Synthesis, aggregation behavior and emulsification characteristic of a multi-sticker amphiphilic polymer. J Macromol Sci A 50:302–309

    Article  CAS  Google Scholar 

  41. Bai Y, Xiong C, Shang X, Xin Y (2014) Experimental study on ethanolamine/surfactant flooding for enhanced oil recovery. Energy Fuels 28:1829–1837

    Article  CAS  Google Scholar 

  42. Dudášová D, Sjöblom J, Øye G (2014) Characterization and suspension stability of particles recovered from offshore produced water. Ind Eng Chem Res 53:1431–1436

    Article  Google Scholar 

  43. Li P-w, Yang D-j, Lou H-m, Qiu X-q (2008) Study on the stability of coal water slurry using dispersion-stability analyzer. J Fuel Chem Technol 36:524–529

    Article  CAS  Google Scholar 

  44. Ravera F, Ferrari M, Liggieri L, Miller R, Passerone A (1997) Measurement of the partition coefficient of surfactants in water/oil systems. Langmuir 13:4817–4820

    Article  CAS  Google Scholar 

  45. Bennett B, Aplin AC, Larter SR (2003) Measurement of partition coefficients of phenol and cresols in gas-charged crude oil/water systems. Org Geochem 34:1581–1590

    Article  CAS  Google Scholar 

  46. Deyerle BA, Zhang Y (2011) Effects of Hofmeister anions on the aggregation behavior of PEO–PPO–PEO triblock copolymers. Langmuir 27:9203–9210

    Article  CAS  Google Scholar 

  47. Schott H (1969) Hydrophile-lipophile balance and cloud points of nonionic surfactants. J Pharm Sci 58:1443–1449

    Article  CAS  Google Scholar 

  48. Sayed GH, Ghuiba FM, Abdou MI, Badr EAA, Tawfik SM, Negm NAM (2012) Synthesis, surface, thermodynamic properties of some biodegradable vanillin-modified polyoxyethylene surfactants. J Surfact Deterg 15:735–743

    Article  CAS  Google Scholar 

  49. Wang J, Li C-Q, An N, Yang Y (2012) Synthesis and demulsification of two lower generation hyperbranched polyether surfactants. Sep Sci Technol 47:1583–1589

    Article  CAS  Google Scholar 

  50. Dong J, Chowdhry BZ, Leharne SA (2003) Surface activity of poloxamines at the interfaces between air–water and hexane–water. Colloids Surf, A 212:9–17

    Article  CAS  Google Scholar 

  51. Alexandridis P, Athanassiou V, Fukuda S, Hatton TA (1994) Surface activity of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) copolymers. Langmuir 10:2604–2612

    Article  CAS  Google Scholar 

  52. Xin X, Xu G, Zhang Z, Chen Y, Wang F (2007) Aggregation behavior of star-like PEO–PPO–PEO block copolymer in aqueous solution. Eur Polym J 43:3106–3111

    Article  CAS  Google Scholar 

  53. Couderc S, Li Y, Bloor DM, Holzwarth JF, Wyn-Jones E (2001) Interaction between the nonionic surfactant hexaethylene glycol mono-n-dodecyl ether (C12EO6) and the surface active nonionic ABA block copolymer pluronic F127 (EO97PO69EO97)—formation of mixed micelles studied using isothermal titration calorimetry and differential scanning calorimetry. Langmuir 17:4818–4824

    Article  CAS  Google Scholar 

  54. Rosen M (1974) Relationship of structure to properties in surfactants: II. Efficiency in surface or interfacial tension reduction. J Am Oil Chem Soc 51:461–465

    Article  CAS  Google Scholar 

  55. Rosen MJ, Aronson S (1981) Standard free energies of adsorption of surfactants at the aqueous solution/air interface from surface tension data in the vicinity of the critical micelle concentration. Colloids and Surfaces 3:201–208

    Article  CAS  Google Scholar 

  56. Rosen MJ, Cohen AW, Dahanayake M, Hua XY (1982) Relationship of structure to properties in surfactants. 10. Surface and thermodynamic properties of 2-dodecyloxypoly(ethenoxyethanol)s, C12H25(OC2H4)xOH, in aqueous solution. J Phys Chem 86:541–545

    Article  CAS  Google Scholar 

  57. Kwan C-C, Rosen MJ (1978) The relationship of structure to properties in surfactants: VII. Synthesis and properties of some sodium 1,4-and 2,6-alkoxynaphthalenesulfonates. J Am Oil Chem Soc 55:625–628

    Article  CAS  Google Scholar 

  58. Al Sabagh AM, Kandil NG, Badawi AM, El-Sharkawy H (2000) Surface activity and thermodynamic of micellization and adsorption for isooctylphenol ethoxylates, phosphate esters and their mixtures with N-diethoxylated perfluorooctanamide. Colloids Surf, A 170:127–136

    Article  CAS  Google Scholar 

  59. Dahanayake M, Cohen AW, Rosen MJ (1986) Relationship of structure to properties of surfactants. 13. Surface and thermodynamic properties of some oxyethylenated sulfates and sulfonates. J Phys Chem B 90:2413–2418

    Article  CAS  Google Scholar 

  60. Islam MN, Kato T (2005) Effect of temperature on the surface phase behavior and micelle formation of a mixed system of nonionic/anionic surfactants. J Colloid Interface Sci 282:142–148

    Article  CAS  Google Scholar 

  61. Patel K, Bahadur P, Guo C, Ma JH, Liu HZ, Yamashita Y, Khanal A, Nakashima K (2007) Salt induced micellization of very hydrophilic PEO–PPO–PEO block copolymers in aqueous solutions. Eur Polym J 43:1699–1708

    Article  CAS  Google Scholar 

  62. Sadeghi R, Jahani F (2012) Salting-in and salting-out of water-soluble polymers in aqueous salt solutions. J Phys Chem B 116:5234–5241

    Article  CAS  Google Scholar 

  63. Bahadur P, Pandya K, Almgren M, Li P, Stilbs P (1993) Effect of inorganic salts on the micellar behaviour of ethylene oxide-propylene oxide block copolymers in aqueous solution. Colloid Polym Sci 271:657–667

    Article  CAS  Google Scholar 

  64. Jolicoeur C, Philip PR (1974) Enthalpy–entropy compensation for micellization and other hydrophobic interactions in aqueous solutions. Can J Chem Eng 52:1834–1839

    Article  CAS  Google Scholar 

  65. Chen L-J, Lin S-Y, Huang C-C, Chen E-M (1998) Temperature dependence of critical micelle concentration of polyoxyethylenated non-ionic surfactants. Colloids Surf, A 135:175–181

    Article  CAS  Google Scholar 

  66. Islam MN, Kato T (2003) Temperature dependence of the surface phase behavior and micelle formation of some nonionic surfactants. J Phys Chem B 107:965–971

    Article  CAS  Google Scholar 

  67. Chen Y, Liu T, Xu G, Zhang J, Zhai X, Yuan J, Tan Y (2015) Aggregation behavior of X-shaped branched block copolymers at the air/water interface: effect of block sequence and temperature. Colloid Polym Sci 293:97–107

    Article  CAS  Google Scholar 

  68. Sugihara G, Hisatomi M (1999) Enthalpy–entropy compensation phenomenon observed for different surfactants in aqueous solution. J Colloid Interface Sci 219:31–36

    Article  CAS  Google Scholar 

  69. Hsu Y-H, Tsui H-W, Lee C-F, Chen S-H, Chen L-J (2015) Effect of alcohols on the heat of micellization of Pluronic F88 aqueous solutions. Colloid Polym Sci 293:3403–3415

    Article  CAS  Google Scholar 

  70. Tsui H-W, Hsu Y-H, Wang J-H, Chen L-J (2008) Novel behavior of heat of micellization of Pluronics F68 and F88 in aqueous solutions. Langmuir 24:13858–13862

    Article  CAS  Google Scholar 

  71. Ge X, Yang J, Xu X, Gao J (2010) The demulsification of crude emulsion of ASP flooding by an organic silicone demulsifier. J Pet Sci Technol 28:1013–1024

    Article  CAS  Google Scholar 

  72. Atta AM, Ismail HS, Elsaeed AM, Fouad RR, Fada AA, Abdel-Rahman AAH (2013) Preparation and application of nonionic polypropylene oxide-graft-polyethylene glycol copolymer surfactants as demulsifier for petroleum crude oil emulsions. J Dispersion Sci Technol 34:161–172

    Article  CAS  Google Scholar 

  73. Wen Y, Cheng H, Lu L-J, Liu J, Feng Y, Guan W, Zhou Q, Huang X-F (2010) Analysis of biological demulsification process of water-in-oil emulsion by Alcaligenes sp. S-XJ-1. Bioresour Technol 101:8315–8322

    Article  CAS  Google Scholar 

  74. Bennett B, Larter SR (1997) Partition behaviour of alkylphenols in crude oil/brine systems under subsurface conditions. Geochim Cosmochim Acta 61:4393–4402

    Article  CAS  Google Scholar 

  75. Hernandez EI, Castro-Sotelo LV, Avendano-Gomez JR, Flores CA, Alvarez-Ramirez F, Vazquez F (2016) Synthesis, characterization, and evaluation of petroleum demulsifiers of multibranched block copolymers. Energy Fuels 30:5363–5378

    Article  CAS  Google Scholar 

  76. Zhang P, Wang H, Liu X, Shi X, Zhang J, Yang G, Sun K, Wang J (2014) The dynamic interfacial adsorption and demulsification behaviors of novel amphiphilic dendrimers. Colloids Surf, A 443:473–480

    Article  CAS  Google Scholar 

  77. Wang J, Li CQ, Li J, Yang JZ (2007) Demulsification of crude oil emulsion using polyamidoamine dendrimers. Sep Sci Technol 42:2111–2120

    Article  CAS  Google Scholar 

  78. Filali M, Aznar R, Svenson M, Porte G, Appell J (1999) Swollen micelles plus hydrophobically modified hydrosoluble polymers in aqueous solutions: decoration versus bridging. A small angle neutron scattering study. J Phys Chem B 103:7293–7301

    Article  CAS  Google Scholar 

  79. Maccarrone S, Allgaier J, Frielinghaus H, Richter D (2014) Anchoring vs bridging: new findings on polymer additives in bicontinuous microemulsions. Langmuir 30:1500–1505

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from Major Research of Science and Technology, China (grant no. 2016ZX05025-003-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yebang Tan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Yin, S., Tan, G. et al. Synthesis and properties of novel branched polyether as demulsifiers for polymer flooding. Colloid Polym Sci 294, 1943–1958 (2016). https://doi.org/10.1007/s00396-016-3956-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3956-x

Keywords

Navigation