Skip to main content

Advertisement

Log in

Obesity alters molecular and functional cardiac responses to ischemia/reperfusion and glucagon-like peptide-1 receptor agonism

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

This study tested the hypothesis that obesity alters the cardiac response to ischemia/reperfusion and/or glucagon like peptide-1 (GLP-1) receptor activation, and that these differences are associated with alterations in the obese cardiac proteome and microRNA (miRNA) transcriptome. Ossabaw swine were fed normal chow or obesogenic diet for 6 months. Cardiac function was assessed at baseline, during a 30-minutes coronary occlusion, and during 2 hours of reperfusion in anesthetized swine treated with saline or exendin-4 for 24 hours. Cardiac biopsies were obtained from normal and ischemia/reperfusion territories. Fat-fed animals were heavier, and exhibited hyperinsulinemia, hyperglycemia, and hypertriglyceridemia. Plasma troponin-I concentration (index of myocardial injury) was increased following ischemia/reperfusion and decreased by exendin-4 treatment in both groups. Ischemia/reperfusion produced reductions in systolic pressure and stroke volume in lean swine. These indices were higher in obese hearts at baseline and relatively maintained throughout ischemia/reperfusion. Exendin-4 administration increased systolic pressure in lean swine but did not affect the blood pressure in obese swine. End-diastolic volume was reduced by exendin-4 following ischemia/reperfusion in obese swine. These divergent physiologic responses were associated with obesity-related differences in proteins related to myocardial structure/function (e.g. titin) and calcium handling (e.g. SERCA2a, histidine-rich Ca2+ binding protein). Alterations in expression of cardiac miRs in obese hearts included miR-15, miR-27, miR-130, miR-181, and let-7. Taken together, these observations validate this discovery approach and reveal novel associations that suggest previously undiscovered mechanisms contributing to the effects of obesity on the heart and contributing to the actions of GLP-1 following ischemia/reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams KF, Schatzkin A, Harris TB, Kipnis V, Mouw T, Ballard-Barbash R, Hollenbeck A, Leitzmann MF (2006) Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old. N Engl J Med 355:763–778. doi:10.1056/NEJMoa055643

    Article  CAS  PubMed  Google Scholar 

  2. Ahmed SH, Lindsey ML (2009) Titin phosphorylation: myocardial passive stiffness regulated by the intracellular giant. Circ Res 105:611–613. doi:10.1161/CIRCRESAHA.109.206912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alpert MA, Lavie CJ, Agrawal H, Aggarwal KB, Kumar SA (2014) Obesity and heart failure: epidemiology, pathophysiology, clinical manifestations, and management. Transl Res 164:345–356. doi:10.1016/j.trsl.2014.04.010

    Article  CAS  PubMed  Google Scholar 

  4. Aurora AB, Mahmoud AI, Luo X, Johnson BA, van Rooij E, Matsuzaki S, Humphries KM, Hill JA, Bassel-Duby R, Sadek HA, Olson EN (2012) MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca(2)(+) overload and cell death. J Clin Investig 122:1222–1232. doi:10.1172/JCI59327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Balderas-Villalobos J, Molina-Munoz T, Mailloux-Salinas P, Bravo G, Carvajal K, Gomez-Viquez NL (2013) Oxidative stress in cardiomyocytes contributes to decreased SERCA2a activity in rats with metabolic syndrome. Am J Physiol Heart Circ Physiol 305:H1344–H1353. doi:10.1152/ajpheart.00211.2013

    Article  CAS  PubMed  Google Scholar 

  6. Ballo P, Motto A, Mondillo S, Faraguti SA (2007) Impact of obesity on left ventricular mass and function in subjects with chronic volume overload. Obesity (Silver Spring) 15:2019–2026. doi:10.1038/oby.2007.241

    Article  Google Scholar 

  7. Bastien M, Poirier P, Lemieux I, Despres JP (2014) Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog Cardiovasc Dis 56:369–381. doi:10.1016/j.pcad.2013.10.016

    Article  PubMed  Google Scholar 

  8. Berwick ZC, Dick GM, Tune JD (2012) Heart of the matter: coronary dysfunction in metabolic syndrome. J Mol Cell Cardiol 52:848–856. doi:10.1016/j.yjmcc.2011.06.025

    Article  CAS  PubMed  Google Scholar 

  9. Borbouse L, Dick GM, Asano S, Bender SB, Dincer UD, Payne GA, Neeb ZP, Bratz IN, Sturek M, Tune JD (2009) Impaired function of coronary BK(Ca) channels in metabolic syndrome. Am J Physiol Heart Circ Physiol 297:H1629–H1637. doi:10.1152/ajpheart.00466.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bourajjaj M, Armand AS, da Costa Martins PA, Weijts B, van der Nagel R, Heeneman S, Wehrens XH, De Windt LJ (2008) NFATc2 is a necessary mediator of calcineurin-dependent cardiac hypertrophy and heart failure. J Biol Chem 283:22295–22303. doi:10.1074/jbc.M801296200

    Article  CAS  PubMed  Google Scholar 

  11. Bugger H, Abel ED (2014) Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 57:660671. doi:10.1007/s00125-014-3171-6

    Article  Google Scholar 

  12. Burkhoff D, Mirsky I, Suga H (2005) Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. Am J Physiol Heart Circ Physiol 289:H501–H512. doi:10.1152/ajpheart.00138.2005

    Article  CAS  PubMed  Google Scholar 

  13. Chugh S, Suen C, Gramolini A (2010) Proteomics and mass spectrometry: what have we learned about the heart? Curr Cardiol Rev 6:124–133. doi:10.2174/157340310791162631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cieniewski-Bernard C, Mulder P, Henry JP, Drobecq H, Dubois E, Pottiez G, Thuillez C, Amouyel P, Richard V, Pinet F (2008) Proteomic analysis of left ventricular remodeling in an experimental model of heart failure. J Proteome Res 7:5004–5016. doi:10.1021/pr800409u

    Article  CAS  PubMed  Google Scholar 

  15. Colombo MG, Meisinger C, Amann U, Heier M, von Scheidt W, Kuch B, Peters A, Kirchberger I (2015) Association of obesity and long-term mortality in patients with acute myocardial infarction with and without diabetes mellitus: results from the MONICA/KORA myocardial infarction registry. Cardiovasc Diabetol 14:24. doi:10.1186/s12933-015-0189-0

    Article  PubMed  PubMed Central  Google Scholar 

  16. Crowley DI, Khoury PR, Urbina EM, Ippisch HM, Kimball TR (2011) Cardiovascular impact of the pediatric obesity epidemic: higher left ventricular mass is related to higher body mass index. J Pediatr 158(709–714):e701. doi:10.1016/j.jpeds.2010.10.016

    Google Scholar 

  17. de Weger RA, Schipper ME, Siera-de Koning E, van der Weide P, van Oosterhout MF, Quadir R, Steenbergen-Nakken H, Lahpor JR, de Jonge N, Bovenschen N (2011) Proteomic profiling of the human failing heart after left ventricular assist device support. J Heart Lung Transplant 30:497–506. doi:10.1016/j.healun.2010.11.011

    Article  PubMed  Google Scholar 

  18. Dineen SL, McKenney ML, Bell LN, Fullenkamp AM, Schultz KA, Alloosh M, Chalasani N, Sturek M (2015) Metabolic syndrome abolishes glucagon-like peptide 1 receptor agonist stimulation of SERCA in coronary smooth muscle. Diabetes 64:3321–3327. doi:10.2337/db14-1790

    Article  CAS  PubMed  Google Scholar 

  19. Fredersdorf S, Thumann C, Zimmermann WH, Vetter R, Graf T, Luchner A, Riegger GA, Schunkert H, Eschenhagen T, Weil J (2012) Increased myocardial SERCA expression in early type 2 diabetes mellitus is insulin dependent: in vivo and in vitro data. Cardiovasc Diabetol 11:57. doi:10.1186/1475-2840-11-57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gejl M, Sondergaard HM, Stecher C, Bibby BM, Moller N, Botker HE, Hansen SB, Gjedde A, Rungby J, Brock B (2012) Exenatide alters myocardial glucose transport and uptake depending on insulin resistance and increases myocardial blood flow in patients with type 2 diabetes. J Clin Endocrinol Metab 97:E1165–E1169. doi:10.1210/jc.2011-3456

    Article  CAS  PubMed  Google Scholar 

  21. Goodwill AG, Mather KJ, Conteh AM, Sassoon DJ, Noblet JN, Tune JD (2014) Cardiovascular and hemodynamic effects of glucagon-like peptide-1. Rev Endocr Metab Disord 15:209–217. doi:10.1007/s11154-014-9290-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Goodwill AG, Tune JD, Noblet JN, Conteh AM, Sassoon D, Casalini ED, Mather KJ (2014) Glucagon-like peptide-1 (7-36) but not (9-36) augments cardiac output during myocardial ischemia via a Frank-Starling mechanism. Basic Res Cardiol 109:426. doi:10.1007/s00395-014-0426-9

    Article  PubMed  PubMed Central  Google Scholar 

  23. Greco S, Fasanaro P, Castelvecchio S, D’Alessandra Y, Arcelli D, Di Donato M, Malavazos A, Capogrossi MC, Menicanti L, Martelli F (2012) MicroRNA dysregulation in diabetic ischemic heart failure patients. Diabetes 61:1633–1641. doi:10.2337/db11-0952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grueter CE, van Rooij E, Johnson BA, DeLeon SM, Sutherland LB, Qi X, Gautron L, Elmquist JK, Bassel-Duby R, Olson EN (2012) A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell 149:671–683. doi:10.1016/j.cell.2012.03.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hamdani N, Franssen C, Lourenco A, Falcao-Pires I, Fontoura D, Leite S, Plettig L, Lopez B, Ottenheijm CA, Becher PM, Gonzalez A, Tschope C, Diez J, Linke WA, Leite-Moreira AF, Paulus WJ (2013) Myocardial titin hypophosphorylation importantly contributes to heart failure with preserved ejection fraction in a rat metabolic risk model. Circ Heart Fail 6:1239–1249. doi:10.1161/CIRCHEARTFAILURE.113.000539

    Article  CAS  PubMed  Google Scholar 

  26. Hamdani N, Hervent AS, Vandekerckhove L, Matheeussen V, Demolder M, Baerts L, De Meester I, Linke WA, Paulus WJ, De Keulenaer GW (2014) Left ventricular diastolic dysfunction and myocardial stiffness in diabetic mice is attenuated by inhibition of dipeptidyl peptidase 4. Cardiovasc Res 104:423–431. doi:10.1093/cvr/cvu223

    Article  PubMed  Google Scholar 

  27. Hogan PG, Chen L, Nardone J, Rao A (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17:2205–2232. doi:10.1101/gad.1102703

    Article  CAS  PubMed  Google Scholar 

  28. Huggett RJ, Burns J, Mackintosh AF, Mary DA (2004) Sympathetic neural activation in nondiabetic metabolic syndrome and its further augmentation by hypertension. Hypertension 44:847–852. doi:10.1161/01.HYP.0000147893.08533.d8

    Article  CAS  PubMed  Google Scholar 

  29. Hullinger TG, Montgomery RL, Seto AG, Dickinson BA, Semus HM, Lynch JM, Dalby CM, Robinson K, Stack C, Latimer PA, Hare JM, Olson EN, van Rooij E (2012) Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res 110:71–81. doi:10.1161/CIRCRESAHA.111.244442

    Article  CAS  PubMed  Google Scholar 

  30. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31:e15. doi:10.1093/nar/gng015

    Article  PubMed  PubMed Central  Google Scholar 

  31. Knudson JD, Dincer UD, Bratz IN, Sturek M, Dick GM, Tune JD (2007) Mechanisms of coronary dysfunction in obesity and insulin resistance. Microcirculation 14:317–338. doi:10.1080/10739680701282887

    Article  CAS  PubMed  Google Scholar 

  32. Kragelund C, Hassager C, Hildebrandt P, Torp-Pedersen C, Kober L, Group TS (2005) Impact of obesity on long-term prognosis following acute myocardial infarction. Int J Cardiol 98:123–131. doi:10.1016/j.ijcard.2004.03.042

    Article  PubMed  Google Scholar 

  33. Kruger M, Linke WA (2011) The giant protein titin: a regulatory node that integrates myocyte signaling pathways. J Biol Chem 286:9905–9912. doi:10.1074/jbc.R110.173260

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lauer MS, Anderson KM, Kannel WB, Levy D (1991) The impact of obesity on left ventricular mass and geometry. The Framingham heart study. JAMA 266:231–236. doi:10.1001/jama.1991.03470020057032

    Article  CAS  PubMed  Google Scholar 

  35. Lee IS, Park KC, Yang KJ, Choi H, Jang YS, Lee JM, Kim HS (2015) Exenatide reverses dysregulated microRNAs in high-fat diet-induced obese mice. Obes Res Clin Pract. doi:10.1016/j.orcp.2015.07.011

    Google Scholar 

  36. Leopold JA (2015) Obesity-related cardiomyopathy is an adipocyte-mediated paracrine disease. Trends Cardiovasc Med 25:127–128. doi:10.1016/j.tcm.2014.09.010

    Article  CAS  PubMed  Google Scholar 

  37. LeWinter MM, Granzier H (2010) Cardiac titin: a multifunctional giant. Circulation 121:2137–2145. doi:10.1161/CIRCULATIONAHA.109.860171

    Article  PubMed  PubMed Central  Google Scholar 

  38. Limpitikul WB, Dick IE, Joshi-Mukherjee R, Overgaard MT, George AL Jr, Yue DT (2014) Calmodulin mutations associated with long QT syndrome prevent inactivation of cardiac L-type Ca(2+) currents and promote proarrhythmic behavior in ventricular myocytes. J Mol Cell Cardiol 74:115–124. doi:10.1016/j.yjmcc.2014.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu LF, Liang Z, Lv ZR, Liu XH, Bai J, Chen J, Chen C, Wang Y (2012) MicroRNA-15a/b are up-regulated in response to myocardial ischemia/reperfusion injury. J Geriatr Cardiol 9:28–32. doi:10.3724/SP.J.1263.2012.00028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258. doi:10.1152/physrev.00015.2009

    Article  CAS  PubMed  Google Scholar 

  41. Mahajan R, Lau DH, Sanders P (2015) Impact of obesity on cardiac metabolism, fibrosis, and function. Trends Cardiovasc Med 25:119–126. doi:10.1016/j.tcm.2014.09.005

    Article  CAS  PubMed  Google Scholar 

  42. Martin-Vaquero P, da Costa RC, Allen MJ, Moore SA, Keirsey JK, Green KB (2015) Proteomic analysis of cerebrospinal fluid in canine cervical spondylomyelopathy. Spine (Phila Pa 1976) 40:601–612. doi:10.1097/BRS.0000000000000831

  43. Meyer M, Schillinger W, Pieske B, Holubarsch C, Heilmann C, Posival H, Kuwajima G, Mikoshiba K, Just H, Hasenfuss G et al (1995) Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 92:778–784. doi:10.1161/01.CIR.92.4.778

    Article  CAS  PubMed  Google Scholar 

  44. Moberly SP, Mather KJ, Berwick ZC, Owen MK, Goodwill AG, Casalini ED, Hutchins GD, Green MA, Ng Y, Considine RV, Perry KM, Chisholm RL, Tune JD (2013) Impaired cardiometabolic responses to glucagon-like peptide 1 in obesity and type 2 diabetes mellitus. Basic Res Cardiol 108:365. doi:10.1007/s00395-013-0365-x

    Article  PubMed  PubMed Central  Google Scholar 

  45. Molkentin JD (2004) Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc Res 63:467–475. doi:10.1016/j.cardiores.2004.01.021

    Article  CAS  PubMed  Google Scholar 

  46. Panjwani N, Mulvihill EE, Longuet C, Yusta B, Campbell JE, Brown TJ, Streutker C, Holland D, Cao X, Baggio LL, Drucker DJ (2013) GLP-1 receptor activation indirectly reduces hepatic lipid accumulation but does not attenuate development of atherosclerosis in diabetic male ApoE(−/−) mice. Endocrinology 154:127–139. doi:10.1210/en.2012-1937

    Article  CAS  PubMed  Google Scholar 

  47. Paulino EC, Ferreira JC, Bechara LR, Tsutsui JM, Mathias W Jr, Lima FB, Casarini DE, Cicogna AC, Brum PC, Negrao CE (2010) Exercise training and caloric restriction prevent reduction in cardiac Ca2+-handling protein profile in obese rats. Hypertension 56:629–635. doi:10.1161/HYPERTENSIONAHA.110.156141

    Article  CAS  PubMed  Google Scholar 

  48. Pinto TE, Gusso S, Hofman PL, Derraik JG, Hornung TS, Cutfield WS, Baldi JC (2014) Systolic and diastolic abnormalities reduce the cardiac response to exercise in adolescents with type 2 diabetes. Diabetes Care 37:1439–1446. doi:10.2337/dc13-2031

    Article  CAS  PubMed  Google Scholar 

  49. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, Eckel RH, American Heart A, Obesity Committee of the Council on Nutrition PA, Metabolism (2006) Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 113:898–918. doi:10.1161/CIRCULATIONAHA.106.171016

  50. Porrello ER, Mahmoud AI, Simpson E, Johnson BA, Grinsfelder D, Canseco D, Mammen PP, Rothermel BA, Olson EN, Sadek HA (2013) Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci USA 110:187–192. doi:10.1073/pnas.1208863110

    Article  CAS  PubMed  Google Scholar 

  51. Rana JS, Mukamal KJ, Morgan JP, Muller JE, Mittleman MA (2004) Obesity and the risk of death after acute myocardial infarction. Am Heart J 147:841–846. doi:10.1016/j.ahj.2003.12.015

    Article  PubMed  Google Scholar 

  52. Rane S, He M, Sayed D, Vashistha H, Malhotra A, Sadoshima J, Vatner DE, Vatner SF, Abdellatif M (2009) Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res 104:879–886. doi:10.1161/CIRCRESAHA.108.193102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rezaul K, Wu L, Mayya V, Hwang SI, Han D (2005) A systematic characterization of mitochondrial proteome from human T leukemia cells. Mol Cell Proteomics 4:169–181. doi:10.1074/mcp.M400115-MCP200

    Article  CAS  PubMed  Google Scholar 

  54. Rodriguez RH, Bickta JL, Murawski P, O’Donnell CP (2014) The impact of obesity and hypoxia on left ventricular function and glycolytic metabolism. Physiol Rep 2:e12001. doi:10.14814/phy2.12001

    Article  PubMed  PubMed Central  Google Scholar 

  55. Schulz R, Rose J, Martin C, Brodde OE, Heusch G (1993) Development of short-term myocardial hibernation. Its limitation by the severity of ischemia and inotropic stimulation. Circulation 88:684–695. doi:10.1161/01.CIR.88.2.684

    Article  CAS  PubMed  Google Scholar 

  56. Shen Y, Shen Z, Miao L, Xin X, Lin S, Zhu Y, Guo W, Zhu YZ (2015) miRNA-30 family inhibition protects against cardiac ischemic injury by regulating cystathionine-gamma-lyase expression. Antioxid Redox Signal 22:224–240. doi:10.1089/ars.2014.5909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100:9440–9445. doi:10.1073/pnas.1530509100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Suga H (1990) Ventricular energetics. Physiol Rev 70:247–277

    CAS  PubMed  Google Scholar 

  59. ter Keurs HE (2012) The interaction of Ca2+ with sarcomeric proteins: role in function and dysfunction of the heart. Am J Physiol Heart Circ Physiol 302:H38–H50. doi:10.1152/ajpheart.00219.2011

    Article  PubMed  Google Scholar 

  60. Trask AJ, Katz PS, Kelly AP, Galantowicz ML, Cismowski MJ, West TA, Neeb ZP, Berwick ZC, Goodwill AG, Alloosh M, Tune JD, Sturek M, Lucchesi PA (2012) Dynamic micro- and macrovascular remodeling in coronary circulation of obese Ossabaw pigs with metabolic syndrome. J Appl Physiol 113:1128–1140. doi:10.1152/japplphysiol.00604.2012

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wang C, Li Q, Wang W, Guo L, Guo C, Sun Y, Zhang J (2015) GLP-1 contributes to increases in PGC-1alpha expression by downregulating miR-23a to reduce apoptosis. Biochem Biophys Res Commun 466:33–39. doi:10.1016/j.bbrc.2015.08.092

    Article  CAS  PubMed  Google Scholar 

  62. Wang Z (2013) miRNA in the regulation of ion channel/transporter expression. Compr Physiol 3:599–653. doi:10.1002/cphy.c110002

    PubMed  Google Scholar 

  63. Wende AR (2015) Post-translational modifications of the cardiac proteome in diabetes and heart failure. Proteom Clin Appl. doi:10.1002/prca.201500052

    Google Scholar 

  64. White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, Perez AT, Fleck PR, Mehta CR, Kupfer S, Wilson C, Cushman WC, Zannad F, Investigators E (2013) Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 369:1327–1335. doi:10.1056/NEJMoa1305889

    Article  CAS  PubMed  Google Scholar 

  65. Wong CY, O’Moore-Sullivan T, Leano R, Byrne N, Beller E, Marwick TH (2004) Alterations of left ventricular myocardial characteristics associated with obesity. Circulation 110:3081–3087. doi:10.1161/01.CIR.0000147184.13872.0F

    Article  PubMed  Google Scholar 

  66. Yakinci C, Mungen B, Karabiber H, Tayfun M, Evereklioglu C (2000) Autonomic nervous system functions in obese children. Brain Dev 22:151–153. doi:10.1016/S0387-7604(00)00094-2

    Article  CAS  PubMed  Google Scholar 

  67. Younce CW, Burmeister MA, Ayala JE (2013) Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a. Am J Physiol Cell Physiol 304:C508–C518. doi:10.1152/ajpcell.00248.2012

    Article  CAS  PubMed  Google Scholar 

  68. Zhao SM, Wang YL, Guo CY, Chen JL, Wu YQ (2014) Progressive decay of Ca2 + homeostasis in the development of diabetic cardiomyopathy. Cardiovasc Diabetol 13:75. doi:10.1186/1475-2840-13-75

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zile MR, Baicu CF, Ikonomidis JS, Stroud RE, Nietert PJ, Bradshaw AD, Slater R, Palmer BM, Van Buren P, Meyer M, Redfield MM, Bull DA, Granzier HL, LeWinter MM (2015) Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation 131:1247–1259. doi:10.1161/CIRCULATIONAHA.114.013215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zinman B, Gerich J, Buse JB, Lewin A, Schwartz S, Raskin P, Hale PM, Zdravkovic M, Blonde L, Investigators L-S (2009) Efficacy and safety of the human glucagon-like peptide-1 analog liraglutide in combination with metformin and thiazolidinedione in patients with type 2 diabetes (LEAD-4 Met + TZD). Diabetes Care 32:1224–1230. doi:10.2337/dc08-2124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health grant, HL117620 (J. Tune and K. Mather, PI). Dr. Goodwill was supported by American Heart Association 13POST1681001813 (A. Goodwill, PI). Mr. Conteh was supported by National Institutes of Health HL117620-S1 (J. Tune and K. Mather, PI). Mr. Sassoon and Ms. Noblet were supported by grant number TL1 TR000162 (A. Shekhar, PI) from the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award. The authors also thank Arpad Somogyi and the Proteomics Core at The Ohio State University for performing protein extraction and mass spectrometry. The authors would also like to thank Jeanette McClintick and the Indiana University Center for Medical Genomics for performing miR microarrays. Ingenuity Pathway Analyses were made possible by a collaboration with WV-INBRE (supported by NIH Grant P20GM103434).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kieren J. Mather.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sassoon, D.J., Goodwill, A.G., Noblet, J.N. et al. Obesity alters molecular and functional cardiac responses to ischemia/reperfusion and glucagon-like peptide-1 receptor agonism. Basic Res Cardiol 111, 43 (2016). https://doi.org/10.1007/s00395-016-0563-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-016-0563-4

Keywords

Navigation