Skip to main content
Log in

Evaluating the ‘no reflow’ phenomenon with myocardial contrast echocardiography

  • FOCUSED ISSUE-No-reflow
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Based on its ability to measure myocardial blood volume and capillary flow, myocardial contrast echocardiography (MCE) has provided invaluable pathophysiological information regarding the no reflow phenomenon both in humans and in the experimental laboratory. The new area of molecular imaging with MCE allows the identification of molecular events within the microcirculation that have provided further insights into the mechanisms involved in the no-reflow phenomenon.Molecular imaging with MCE has the potential for monitoring molecular events associated with no reflow phenomenon and also to develop strategies to limit the no reflow phenomenon via pharmacological means. This paper will cover these areas briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio G, Weisman HF, Mannisi JA, Becker LC (1989) Progressive impairment of regional myocardial perfusion after initial restoration of postischemic blood flow. Circulation 80:1846–1861

    PubMed  CAS  Google Scholar 

  2. Christiansen JP, Leong-Poi H, Klibanov, AL, Kaul S, Lindner JR (2002) Noninvasive imaging of myocardial reperfusion injury using leukocyte-targeted contrast echocardiography. Circulation 105:1764–1767

    Article  PubMed  Google Scholar 

  3. Coggins MP, Le DE, Wei K, Goodman NC, Lindner JR, Kaul S (2001) Noninvasive prediction of ultimate infarct size at the time of acute coronary occlusion based on the extent and magnitude of collateral-derived myocardial blood flow. Circulation 104:2471–2477

    PubMed  CAS  Google Scholar 

  4. Davies MJ, Thomas AC, Knapman PA, Hangartner JR (1986) Intramyocardial platelet aggregation in patients with unstable angina suffering sudden ischemic cardiac death. Circulation 73:418–427

    PubMed  CAS  Google Scholar 

  5. Gawaz M, Neumann FJ, Dickfeld T, Reininger A, Adelsberger H, Gebhardt A, Schomig A (1997) Vitronectin receptor (alpha(v)beta3) mediates platelet adhesion to the luminal aspect of endothelial cells: implications for reperfusion in acute myocardial infarction. Circulation 96:1809–1818

    PubMed  CAS  Google Scholar 

  6. Ito H, Tomooka T, Sakai N, Yu H, Higashino Y, Fujii K, Masuyama T, Kitabatake A, Minamino T (1992) Lack of myocardial perfusion immediately after successful thrombolysis. A predictor of poor recovery of left ventricular function in anterior myocardial infarction. Circulation 85:1699–1705

    PubMed  CAS  Google Scholar 

  7. Ito H, Maruyama A, Iwakura K, Takiuchi S, Masuyama T, Hori M, Higashino Y, Fujii K, Minamino T (1996) Clinical implications of the “no reflow” phenomenon: a predictor of complications and left ventricular remodeling in reperfused anterior wall myocardial infarction. Circulation 93:223–228

    PubMed  CAS  Google Scholar 

  8. Jayaweera AR, Edwards N, Glasheen WP, Villanueva FS, Abbott RD, Kaul S (1994) In-vivo myocardial kinetics of air-filled albumin microbubbles during myocardial contrast echocardiography: comparison with radiolabeled red blood cells. Circ Res 74:1157–1165

    PubMed  CAS  Google Scholar 

  9. Jayaweera AR, Wei K, Coggins M, Bin JP, Goodman C, Kaul S (1999) Role of capillaries in determining coronary blood flow reserve: New insights using myocardial contrast echocardiography. Am J Physiol 277:H2363–H2372

    PubMed  CAS  Google Scholar 

  10. Johnson WB, Malone SA, Pantely GA, Anselone CG, Bristow JD (1988) No reflow and extent of infarction during maximal vasodilation in the porcine heart. Circulation 78:462–472

    PubMed  CAS  Google Scholar 

  11. Kaul S (2001) Myocardial contrast echocardiography: Basic principles. Prog Cardiovasc Dis 44:1–11

    Article  PubMed  CAS  Google Scholar 

  12. Kaul S, Jayaweera AR (1997) Coronary and myocardial blood volumes: noninvasive tools to assess the coronary microcirculation? Circulation 96:719–724

    PubMed  CAS  Google Scholar 

  13. Kaul S, Villanueva FS (1992) Is the determination of myocardial perfusion necessary to evaluate the success of reperfusion when the infarct related artery is open? Circulation 85:1942–1944

    PubMed  CAS  Google Scholar 

  14. Kaul S, Pandian NG, Guerrero JL, Gillam LD, Okada RD, Weyman AE (1987) Effects of selectively altering the collateral driving pressure on regional perfusion and function in the occluded coronary bed in the dog. Circ Res 61:77–85

    PubMed  CAS  Google Scholar 

  15. Kassab GS, Lin DH, Fung YB (1994) Topology and dimensions of pig coronary capillary network. Am J Physiol 267:H319–H325

    PubMed  CAS  Google Scholar 

  16. Keller MW, Segal SS, Kaul S, Duling BR (1989) The behavior of sonicated albumin microbubbles within the microcirculation: a basis for their use during myocardial contrast echocardiography. Circ Res 65:458–467

    PubMed  CAS  Google Scholar 

  17. Knabb RM, Bergmann SR, Fox KA, Sobel BE (1987) The temporal pattern of recovery of myocardial perfusion and metabolism delineated by positron emission tomography after coronary thrombolysis. J Nucl Med 28:1563–1570

    PubMed  CAS  Google Scholar 

  18. Kotani J, Nanto S, Mintz GS, Kitakaze M, Ohara T, Morozumi T, Nagata S, Hori M (2002) Plaque gruel of atheromatous coronary lesion may contribute to the no reflow phenomenon in patients with acute coronary syndrome. Circulation 106:1672–1677

    Article  PubMed  Google Scholar 

  19. Le DE, Bin JP, Coggins M, Linder J, Wei K, Kaul S (2002) Relation between myocardial oxygen consumption and myocardial blood volume: a study using myocardial contrast echocardiography. J Am Soc Echocardiogr 15:857–863

    Article  PubMed  Google Scholar 

  20. Leong-Poi H, Christiansen J, Heppner P, Lewis CW, Klibanov AL, Kaul S, Lindner JR (2005) Assessment of endogenous and therapeutic arteriogenesis by contrast ultrasound molecular imaging of integrin expression. Circulation 111:3248–3254

    Article  PubMed  CAS  Google Scholar 

  21. Lindner JR (2004) Molecular imaging with contrast ultrasound and targeted microbubbles. J Nucl Cardiol 11:215–221

    Article  PubMed  Google Scholar 

  22. Lindner JR, Coggins MP, Kaul S, Klibanov AL, Brandenburger GH, Ley K (2000) Microbubble persistence in the microcirculation during ischemiareperfusion and inflammation is caused by integrin- and complementmediated adherence to activated leukocytes. Circulation 101:668–675

    PubMed  CAS  Google Scholar 

  23. Murphy JF, Bordet JC, Wyler B, Rissoan MC, Chomarat P, Defrance T, Miossec P, McGregor JL (1994) The vitronectin receptor (alpha v beta 3) is implicated, in cooperation with P-selectin and platelet-activating factor, in the adhesion of monocytes to activated endothelial cells. Biochem J 304:537–542

    PubMed  CAS  Google Scholar 

  24. Okada Y, Copeland BR, Hamann GF, Koziol JA, Cheresh DA, del Zoppo GJ (1996) Integrin alphavbeta3 is expressed in selected microvessels after focal cerebral ischemia. Am J Pathol 149:37–44

    PubMed  CAS  Google Scholar 

  25. Ragosta M, Camarano GP, Kaul S, Powers E, Sarembock IJ, Gimple LW (1994) Microvascular integrity indicates myocellular viability in patients with recent myocardial infarction: new insights using myocardial contrast echocardiography. Circulation 89:2562–2569

    PubMed  CAS  Google Scholar 

  26. Reimer KA, Jennings RB (1979) The “wave front phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral blood flow. Lab Invest 40:633–644

    PubMed  CAS  Google Scholar 

  27. Sabia PJ, Powers ER, Ragosta M, Sarembock IJ, Burwell LR, Kaul S (1992) An association between collateral blood flow and myocardial viability in patients with recent myocardial infarction. N Engl J Med 372:1825–1831

    Article  Google Scholar 

  28. Sabia PJ, Powers ER, Jayaweera AR, Ragosta M, Kaul S (1992) Functional significance of collateral blood flow in patients with recent acute myocardial infarction. A study using myocardial contrast echocardiography. Circulation 85:2080–2089

    PubMed  CAS  Google Scholar 

  29. Sakuma T, Hayashi Y, Sumii K, Imazu M, Yamakido M (1998) Prediction of short- and intermediate-term prognoses of patients with acute myocardial infarction using myocardial contrast echocardiography one day after recanalization. J Am Coll Cardiol 32:890–897

    Article  PubMed  CAS  Google Scholar 

  30. Sakuma T, Sklenar J, Leong-Poi H, Goodman NC, Glover DK, Kaul S (2004) Molecular imaging identifies regions with microthromboemboli during primary angioplasty in acute coronary thrombosis. J Nucl Med 45:1194–1200

    PubMed  Google Scholar 

  31. Sakuma T, Leong-Poi H, Fisher NG, Goodman NC, Kaul S (2003) Further insights into the ‘no-reflow’ phenomenon after primary angioplasty in acute myocardial infarction: the role of microthromboemboli. J Am Soc Echocardiogr 16:15–21

    Article  PubMed  Google Scholar 

  32. Sakuma T, Sari I, Goodman NC, Lindner JR, Klibanov A, Kaul S (2005) Simultaneous αvβ3 and IIb/IIIa inhibition causes a marked reduction in infarct size following reperfusion in a canine model of acute coronary thrombosis: utility of in-vivo molecular imaging with myocardial contrast echocardiography. Cardiovasc Res 66:552–561

    Article  PubMed  CAS  Google Scholar 

  33. Schaper W, Frenzel H, Hort W (1979) Experimental coronary artery occlusion, I:Measurement of infarct size. Basic Res Cardiol 74:46–53

    Article  PubMed  CAS  Google Scholar 

  34. Swinburn JMA, Lahiri A, Senior R (2001) Intravenous myocardial contrast echocardiography predicts recovery of function early after acute myocardial infarction. J Am Coll Cardiol 38:19–25

    Article  PubMed  CAS  Google Scholar 

  35. Tillmanns H, Leinberger H, Neumann FJ, Steinhausen M, Parekh N, Zimmerman R, Dussel R, Kuebler W (1987) Myocardial microcirculation in the beating heart – In vivo microscopic studies. In: Spaan JAE, Bruschke AVG, Gittenberger-de Groot AC (eds) Coronary Circulation. Martin Nijhoff Publishers, Dordrecht, The Netherlands, pp 88–94

  36. Villanueva FS, Glasheen WP, Sklenar J, Kaul S (1993) Characterization of spatial patterns of flow within the reperfused myocardium using myocardial contrast echocardiography: implications in determining the extent of myocardial salvage. Circulation 88:2596–2606

    PubMed  CAS  Google Scholar 

  37. Villanueva FS, Camarano G, Ismail S, Goodman NC, Sklenar J, Kaul S (1996) Coronary reserve abnormalities during post-infarct reperfusion: implications for the timing of myocardial contrast echocardiography to assess myocardial viability. Circulation 94:748–754

    PubMed  CAS  Google Scholar 

  38. Vanhaecke J, Flameng W, Borgers M, Jang I, Van de Werf F, De Geest H (1990) Evidence for decreased coronary flow reserve in viable postischemic myocardium. Circ Res 67:1201–1210

    PubMed  CAS  Google Scholar 

  39. Wei K, Firoozan S, Jayaweera AR, Linka A, Skyba DM, Kaul S (1998) Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a continuous infusion. Circulation 97:473–482

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kaul MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaul, S. Evaluating the ‘no reflow’ phenomenon with myocardial contrast echocardiography. Basic Res Cardiol 101, 391–399 (2006). https://doi.org/10.1007/s00395-006-0618-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-006-0618-z

Key words

Navigation