Skip to main content
Log in

Short-term effect of bedtime consumption of fermented milk supplemented with calcium, inulin-type fructans and caseinphosphopeptides on bone metabolism in healthy, postmenopausal women

  • ORIGINAL CONTRIBUTION
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Background

Milk products are good sources of calcium and their consumption may reduce bone resorption and thus contribute to prevent bone loss.

Aim of the study

We tested the hypothesis that bedtime consumption of fermented milk supplemented with calcium inhibits the nocturnally enhanced bone resorption more markedly than fermented milk alone, and postulated that this effect was most pronounced when calcium absorption enhancers were added.

Methods

In a controlled, parallel, double-blind intervention study over 2 weeks we investigated the short-term effects of two fermented milks supplemented with calcium from milk minerals (f-milk + Ca, n = 28) or calcium from milk minerals, inulin-type fructans and caseinphosphopeptides (f-milk + Ca + ITF + CPP; n = 29) on calcium and bone metabolism in healthy, postmenopausal women, and compared them with the effect of a fermented control milk without supplements (f-milk, n = 28). At bedtime 175 ml/d of either test milk was consumed. Fasting blood samples and 48 h-urine were collected at baseline and at the end of the intervention. Urine was divided into a pooled daytime and nighttime fraction. Multifactorial ANOVA was performed.

Results

Fermented milk independent of a supplement (n = 85) reduced the nocturnal excretion of deoxypyridinoline, a marker of bone resorption, from 11.73 ± 0.54 before to 9.57 ± 0.54 µmol/mol creatinine at the end of the intervention (P = 0.005). No effect was seen in the daytime fraction. Differences between the three milks (n = 28 resp. 29) were not significant. Fermented milk reduced bone alkaline phosphatase, a marker of bone formation, from 25.03 ± 2.08 to 18.96 ± 2.08 U/l, with no difference between these groups either. Fermented milk increased the nocturnal but not daytime urinary excretion of calcium and phosphorus. The effects on calcium and phosphorus excretion were mainly due to the group supplemented with Ca + ITF + CPP.

Conclusion

Bedtime consumption of fermented milk reduced the nocturnal bone resorption by decelerating its turnover. Supplemented calcium from milk mineral had no additional effect unless the absorption enhancers ITF + CPP were added. A stimulated intestinal calcium absorption may be assumed, since urinary calcium excretion increased at a constant bone resorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BAP:

Bone alkaline phosphatase

Ca:

Calcium

CPP:

Caseinphosphopeptides

DPD:

Desoxypyridinoline

f-milk:

Fermented milk

FOS:

Fructooligosaccharide

ITF:

Inulin-type fructans

PTH:

Parathyroid hormone

TAP:

Total alkaline phosphatase

References

  1. Abrams SA, Griffin IJ, Hawthorne KM, Liang L, Gunn SK, Darlington G, Ellis KJ (2005) A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am J Clin Nutr 82:471–476

    CAS  Google Scholar 

  2. Açil Y, Brinckmann J, Notbohm H, Müller PK, Batge B (1996) Changes with age in the urinary excretion of hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP). Scand J Clin Lab Invest 56:275–283

    Article  Google Scholar 

  3. Black RE, Williams SM, Jones IE, Goulding A (2002) Children who avoid drinking cow milk have low dietary calcium intakes and poor bone health. Am J Clin Nutr 76:675–680

    CAS  Google Scholar 

  4. Blumsohn A, Herrington K, Hannon RA, Shao P, Eyre DR, Eastell R (1994) The effect of calcium supplementation on the circadian-rhythm of bone-resorption. J Clin Endocrinol Metabol 79:730–735

    Article  CAS  Google Scholar 

  5. Bongers A, van den Heuvel EGHM (2003) Prebiotics and the bioavailability of minerals and trace elements. Food Rev Int 19:397–422

    Article  CAS  Google Scholar 

  6. Bouhallab S, Bouglé D (2004) Biopeptides of milk: caseinophosphopeptides and mineral bioavailability. Reprod Nutr Dev 44(5):493–498

    Article  CAS  Google Scholar 

  7. Cashman KD (2006) Milk minerals (including trace elements) and bone health. Int Dairy J 16:1389–1398

    Article  CAS  Google Scholar 

  8. Cook IJ, Irvine EJ, Campbell D, Shannon S, Reddy SN, Collins SM (1990) Effect of dietary fiber on symptoms and rectosigmoid motility in patients with irritable bowel syndrome: a controlled, crossover study. Gastroenterology 98(1):66–72

    CAS  Google Scholar 

  9. Coudray C, Bellanger J, Castiglia-Delavaud C, Rémésy C, Vermorel M, Rayssignuier Y (1997) Effect of soluble or partly soluble dietary fibres supplementation on absorption and balance of calcium, magnesium, iron and zinc in healthy young men. Eur J Clin Nutr 51:375–380

    Article  CAS  Google Scholar 

  10. Dawson-Hughes B, Dallal GE, Krall EA, Sadowski L, Sahyoun N, Tannenbaum SA (1990) Controlled trial of the effect of calcium supplementation on bone density in postmenopausal women. N Engl J Med 323:878–883

    CAS  Google Scholar 

  11. Dehne LI, Klemm C, Henseler G, Hermann-Kunz E (1999) The German food code and nutrient data base (BLS II.2). Eur J Epidemiol 15:355–359

    Article  CAS  Google Scholar 

  12. Eastell R, Calvo MS, Burritt MF, Offord KP, Russell RGG, Riggs BL (1992) Abnormalities in circadian patterns of bone-resorption and renal calcium conservation in Type-I osteoporosis. J Clin Endocrinol Metab 74:487–494

    Article  CAS  Google Scholar 

  13. Erba D, Ciappellano S, Testolin G (2002) Effect of the ratio of casein phosphopeptides to calcium (w/w) on passive calcium transport in the distal small intestine of rats. Nutrition 18:743–746

    Article  CAS  Google Scholar 

  14. Fardellone P, Brazier M, Kamel S, Gueris J, Graulet AM, Lienard J, Sebert JL (1998) Biochemical effects of calcium supplementation in postmenopausal women: influence of dietary calcium intake. Am J Clin Nutr 67:1273–1278

    CAS  Google Scholar 

  15. Griffin IJ, Davila PM, Abrams SA (2002) Non-digestible oligosaccharides and calcium absorption in girls with adequate calcium intakes. Br J Nutr 87(Suppl 2):187–191

    Article  CAS  Google Scholar 

  16. Hansen M, Sandstrom B, Jensen M, Sorensen SS (1997) Effect of casein phosphopeptides on zinc and calcium absorption from bread meals. J Trace Elem Med Bio 11(3):143–149

    CAS  Google Scholar 

  17. Heaney RP (2000) Calcium, dairy products and osteoporosis. J Am Coll Nutr 19:83S–99S

    CAS  Google Scholar 

  18. Heaney RP, Saito Y, Orimo H (1994) Effect of caseinophosphopeptide on absorbability of co-ingested calcium in normal postmenopausal women. J Bone Miner Metab 12:77–81

    Article  CAS  Google Scholar 

  19. Horowitz M, Need AG, Morris HA, Wishart J, Nordin BE (1988) Biochemical effects of calcium supplementation in postmenopausal osteoporosis. Eur J Clin Nutr 42:775–778

    CAS  Google Scholar 

  20. Hu JF, Zhao XH, Jia JB, Parpia B, Campbell TC (1993) Dietary calcium and bone density among middle-aged and elderly women in China. Am J Clin Nutr 58:219–227

    CAS  Google Scholar 

  21. Kopra N, Scholz-Ahrens KE, Barth CA (1992) Effect of casein phosphopeptides on utilization of calcium in vitamin-D-replete and vitamin-D-deficient rats. Milchwissenschaft 47:488–493

    CAS  Google Scholar 

  22. Lanham-New SA (2006) Fruit and vegetables: the unexpected natural answer to the question of osteoporosis prevention. Am J Clin Nutr 83:1254–1255

    CAS  Google Scholar 

  23. López-Huertas E, Teucher B, Boza JJ, Martínez-Férez A, Majsak-Newman G, Baró L, Carrero JJ, González-Santiago M, Fonollá J, Fairweather-Tait S (2006) Absorption of calcium from milks enriched with fructo-oligosaccharides, caseinophosphopeptides, tricalcium phosphate, and milk solids. Am J Clin Nutr 83:310–316

    Google Scholar 

  24. Martini L, Wood RJ (2002) Relative bioavailability of calcium-rich dietary sources in the elderly. Am J Clin Nutr 76:1345–1350

    CAS  Google Scholar 

  25. Matkovic V, Heaney RP (1992) Calcium balance during human growth: evidence for threshold behavior. Am J Clin Nutr 55:992–996

    CAS  Google Scholar 

  26. Matkovic V, Landoll JD, Badenhop-Stevens NE, Ha EY, Crncevic-Orlic Z, Li B, Goel P (2004) Nutrition influences skeletal development from childhood to adulthood: a study of hip, spine, and forearm in adolescent females. J Nutr 134:701–705

    Google Scholar 

  27. McKane WR, Khosla S, Egan KS, Robins SP, Burritt MF, Riggs BL (1996) Role of calcium intake in modulating age-related increases in parathyroid function and bone resorption. J Clin Endocrinol Metab 81:1699–1703

    Article  CAS  Google Scholar 

  28. Möller NP, Scholz-Ahrens KE, Roos N, Schrezenmeir (2008) Bioactive peptides and proteins from foods: indication for health effects. Eur J Nutr 2008 47(4):171–182.

  29. Murphy S, Khaw KT, May H, Compston JE (1994) Milk consumption and bone-mineral density in middle-aged and elderly women. BMJ 308:939–941

    CAS  Google Scholar 

  30. Narva M, Karkkainen M, Poussa T, Lamberg-Allardt C, Korpela R (2003) Caseinphosphopeptides in milk and fermented milk do not affect calcium metabolism acutely in postmenopausal women. J Am Coll Nutr 22:88–93

    Google Scholar 

  31. Ohta A, Motohashi Y, Ohtsuki M, Hirayama M, Adachi T, Sakuma K (1998) Dietary fructooligosaccharides change the concentration of calbindin-D9k differently in the mucosa of the small and large intestine of rats. J Nutr 128(6):934–939

    CAS  Google Scholar 

  32. Orwoll ES, Meier DE (1986) Alterations in calcium, vitamin-D, and parathyroid-hormone physiology in normal men with aging—relationship to the development of senile osteopenia. J Clin Endocrinol Metab 63:1262–1269

    Article  CAS  Google Scholar 

  33. Raschka L, Daniel H (2005) Diet composition and age determine the effects of inulin-type fructans on intestinal calcium absorption in rat. Eur J Nutr 44(6):360–364

    Article  CAS  Google Scholar 

  34. Raschka L, Daniel H (2005) Mechanisms underlying the effects of inulin-type fructans on calcium absorption in the large intestine of rats. Bone 37(5):728–735

    Article  CAS  Google Scholar 

  35. Recker RR, Heaney RP (1985) The effect of milk supplements on calcium metabolism, bone metabolism and calcium balance. Am J Clin Nutr 41:254–263

    CAS  Google Scholar 

  36. Riggs BL, O’Fallon WM, Muhs J, O’Connor MK, Kumar R, Melton LJ III (1998) Long-term effects of calcium supplementation on serum parathyroid hormone level, bone turnover, and bone loss in elderly women. J Bone Min Res 13:168–174

    Article  CAS  Google Scholar 

  37. Roberfroid MB, Cumps J, Devogelaer JP (2002) Dietary chicory inulin increases whole-body bone mineral density in growing male rats. J Nutr 132:3599–3602

    CAS  Google Scholar 

  38. Sato R, Noguchi T, Naito H (1986) Casein phosphopeptide (CPP) enhances calcium absorption from the ligated segment of rat small intestine. J Nutr Sci Vitaminol 32:67–76

    CAS  Google Scholar 

  39. Scholz-Ahrens KE, Açil Y, Schrezenmeir J (2002) Effect of oligofructose or dietary calcium on repeated calcium and phosphorus balances, bone mineralization and trabecular structure in ovariectomized rats. Br J Nutr 88:365–377

    Article  CAS  Google Scholar 

  40. Scholz-Ahrens KE, Ade P, Marten B, Weber P, Timm W, Açil Y, Glüer CC, Schrezenmeir J (2007) Prebiotics, probiotics and synbiotics affect mineral absorption, bone mineral content and bone structure. J Nutr 137:838S–846S

    CAS  Google Scholar 

  41. Scholz-Ahrens KE, Barth CA, Drescher K, Goralczyk R, Rambeck WA, Wehr U, Schrezenmeir J (1996) Modulation of bone markers by dietary calcium in ovariectomized minipigs. World Congress on Osteoporosis, Amsterdam. In: Osteoporosis Int 6:242 (abstract)

  42. Scholz-Ahrens KE, Kopra N, Barth CA (1990) Effect of casein phosphopeptides on utilization of calcium in minipigs and vitamin-D-deficient rats. Z Ernährungswiss 29:295–298

    Article  CAS  Google Scholar 

  43. Scholz-Ahrens KE, Schrezenmeir J (2007) Inulin and oligofructose and mineral metabolism—the evidence from animal trials. J Nutr 137(11 Suppl):2513S–2523S

    CAS  Google Scholar 

  44. Scholz-Ahrens KE, Schrezenmeir J (2000) Effects of bioactive substances in milk on mineral and trace element metabolism with special reference to casein phosphopeptides. Br J Nutr 84:S147–S153

    Article  CAS  Google Scholar 

  45. Suleiman S, Nelson M, Li FM, BuxtonThomas M, Moniz C (1997) Effect of calcium intake and physical activity level on bone mass and turnover in healthy, white, postmenopausal women. Am J Clin Nutr 66:937–943

    CAS  Google Scholar 

  46. Tahiri M, Tressol JC, Arnaud J, Bornet FR, Bouteloup-Demange C, Feillet-Coudray C, Brandolini M, Ducros V, Pepin D, Brouns F, Roussel AM, Rayssiguier Y, Coudray C (2003) Effect of short-chain fructooligosaccharides on intestinal calcium absorption and calcium status in postmenopausal women: a stable-isotope study. Am J Clin Nutr 77:449–457

    CAS  Google Scholar 

  47. Takahara S, Morohashi T, Sano T, Ohta A, Yamada S, Sasa R (2000) Fructooligosaccharide consumption enhances femoral bone volume and mineral concentrations in rats. J Nutr 130:1792–1795

    CAS  Google Scholar 

  48. Teucher B, Majsak-Newman G, Dainty JR, McDonagh D, FitzGerald RJ, Fairweather-Tait SJ (2006) Calcium absorption is not increased by caseinophosphopeptides. Am J Clin Nutr 84:162–166

    CAS  Google Scholar 

  49. Tsuchita H, Suzuki T, Kuwata T (2001) The effect of casein phosphopeptides on calcium absorption from calcium-fortified milk in growing rats. Br J Nutr 85:5–10

    Article  CAS  Google Scholar 

  50. Uenishi K, Ishida H, Toba Y, Aoe S, Itabashi A, Takada Y (2006) Milk basic protein increases bone mineral density and improves bone metabolism in healthy young women. Osteoporos Int 18:385–390

    Article  CAS  Google Scholar 

  51. Van den Heuvel EG, Muys T, van Dokkum W, Schaafsma G (1999) Oligofructose stimulates calcium absorption in adolescents. Am J Clin Nutr 69:544–548

    Google Scholar 

Download references

Acknowledgments

The study was funded in part by DMV International, Veghel, The Netherlands. We thank Mrs. K. Gonda, Mrs. A. Thoss, and Mrs. F. Repenning for their excellent assistance with the clinical and analytical part of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina E. Scholz-Ahrens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adolphi, B., Scholz-Ahrens, K.E., de Vrese, M. et al. Short-term effect of bedtime consumption of fermented milk supplemented with calcium, inulin-type fructans and caseinphosphopeptides on bone metabolism in healthy, postmenopausal women. Eur J Nutr 48, 45–53 (2009). https://doi.org/10.1007/s00394-008-0759-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-008-0759-y

Keywords

Navigation