Skip to main content
Log in

Periphere Mechanismen von Gelenkschmerzen mit speziellem Fokus auf den synovialen Fibroblasten

Peripheral mechanisms of joint pain with special focus on the synovial fibroblast

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Gelenkschmerz ist eine der am häufigsten auftretenden Schmerzformen. Etwa ein Drittel der Bevölkerung hat bereits einmal Gelenkschmerz erfahren. Bis heute ist diese Schmerzform nicht effektiv behandelbar, und Nebenwirkungen der verwendeten Medikamente sind häufig gefährlich. Es ist deshalb sehr wichtig, unser Verständnis über die Ursachen und die Mechanismen von Gelenkschmerzen weiter zu verbessern. Gelenke und ihre umgebenden Strukturen sind sehr gut mit Nervenfasern versorgt, die auf mechanische Beanspruchung reagieren. Lokale Entzündungsprozesse sensibilisieren diese Afferenzen, und es resultiert eine erniedrigte Schmerzschwelle.

Über die lokalen Prozesse, insbesondere im Synovialgewebe, ist wenig bekannt. Rezeptoren, die im Nervensystem beschrieben sind, werden zunehmend auch im synovialen Fibroblasten nachgewiesen. Deren Funktion ist noch weitgehend unbekannt. Allerdings sind neue therapeutische Angriffspunkte über andere Systeme, z. B. den TRPV1- oder den P2X4-Rezeptor, zu erwarten.

Abstract

Joint pain is one of the most common forms of pain and is experienced by almost a third of the population at some time. To date, it has not been possible to treat joint pain effectively and side effects of commonly prescribed drugs are often hazardous. Therefore, improvements in our understanding of causes and mechanisms associated with joint pain are required. Joints and their neighbouring structures are well endowed with nerve fibres which respond to mechanical stimuli. Following local inflammation, the activation threshold of these afferent nerve fibres is significantly decreased, such that even low level stimuli encode nociception.

Currently, there is a lack about local mechanisms in synovial tissue. Various receptors, well known from the nervous system, are increasingly being detected in synovial fibroblasts. However, little is known about their function. Innovative new therapies are expected to emerge by targeting various receptors, e.g. the TRPV1- or the P2X4 receptor system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Davis MA, Ettinger WH, Neuhaus JM et al. (1992) Correlates of knee pain among US adults with and without radiographic knee osteoarthritis. J Rheumatol 19: 1943–1949

    PubMed  CAS  Google Scholar 

  2. Creamer P, Lethbridge-Cejku M, Hochberg MC (1999) Determinants of pain severity in knee osteoarthritis: effect of demographic and psychosocial variables using 3 pain measures. J Rheumatol 26: 1785–1792

    PubMed  CAS  Google Scholar 

  3. Hill CL, Hunter DJ, Niu J et al. (2007) Synovitis detected on magnetic resonance imaging and its relation to pain and cartilage loss in knee osteoarthritis. Ann Rheum Dis 66: 1599–1603

    Article  PubMed  Google Scholar 

  4. Ritchlin C (2000) Fibroblast biology. Effector signals released by the synovial fibroblast in arthritis. Arthritis Res 2: 356–360

    Article  PubMed  CAS  Google Scholar 

  5. Brenn D, Richter F, Schaible H-G (2007) Sensitization of unmyelinated sensory fibres of the joint nerve to mechanical stimuli by interleukin-6 in the rat. An inflammatory mechanism of joint pain. Arthritis Rheumatism 56: 351–359

    Article  PubMed  CAS  Google Scholar 

  6. Schaible HG, Grubb BD (1993) Afferent and spinal mechanisms of joint pain. Pain 55: 5–54

    Article  PubMed  CAS  Google Scholar 

  7. Brune K, Beyer A, Schäfer M (Hrsg) (2001) Schmerz, Pathophysiologie, Pharmakologie, Therapie. Springer, Berlin Heidelberg New York Tokyo, S 10–12

  8. Wendler J, Baerwald C (Hrsg) (2004) Rheuma und Schmerz. Uni-Med Bremen, S 26–27

  9. Attur M, Al-Mussawir HE, Patel J et al. (2008) Prostaglandin E2 exerts catabolic effects in osteoarthritis cartilage: evidence for signaling via the EP4 receptor. J Immunol 181: 5082–5088

    PubMed  CAS  Google Scholar 

  10. Toma V, Zeilhofer HU, Simmen BR et al. (2008) Differential gene expression of prostaglandin E2 receptors (EP1-4) in synovial fibroblasts from patients with osteoarthritis and rheumatoid arthritis. Ann Rheum Dis 67 (Suppl II): 590

    Google Scholar 

  11. Gold MS (2005) Ion channels: recent advances and clinical applications. In: Flor H, Kalso E, Dostrovsky JO (eds) Proceedings of the 11th World Congress on Pain. IASP, Seattle, pp 73–81

  12. Cheng HY, Pitcher GM, Laviolette SR et al. (2002) DREAM is a critical transcriptional repressor for pain modulation. Cell 108: 31–43

    Article  PubMed  CAS  Google Scholar 

  13. Reisch N, Aeschlimann A, Gay S, Sprott H (2006) The DREAM of pain relief. Curr Rheum Rev 2: 69–82

    Article  CAS  Google Scholar 

  14. Reisch N, Engler A, Aeschlimann A et al. (2008) DREAM is reduced in synovial fibroblasts of patients with chronic arthritic pain: is it a suitable target for peripheral pain management? Arthritis Res Ther 10: R60

    Article  PubMed  CAS  Google Scholar 

  15. Toma V, Simmen BR, Gay RE et al. (2008) Differential gene expression in synovial fibroblasts from patients with osteoarthritis and rheumatoid arthritis of the knee. Ann Rheum Dis 67 (Suppl II): 444–445

    Google Scholar 

  16. Toma V, Engler A, Simmen BR et al. (2008) Gene modulations exerted by ATP in cultured synovial fibroblasts from patients with osteoarthritis: results of a study with gene arrays. Ann Rheum Dis 67 (Suppl II): 445

    Google Scholar 

  17. Waldvogel HH (Hrsg) (2001) Analgetika, Antinozizeptiva, Adjuvanzien. Springer, Berlin Heidelberg New York Tokyo, S 52–79

  18. Sprott H, Pap T, Rethage J et al. (2000) Expression of the precursor of secretoneurin, secretogranin II, in the synovium of patients with rheumatoid arthritis and osteoarthritis. J Rheum 27: 2347–2350

    PubMed  CAS  Google Scholar 

  19. Inoue H, Shimoyama Y, Hirabayashi K et al. (2001) Production of neuropeptide substance P by synovial fibroblasts from patients with rheumatoid arthritis and osteoarthritis. Neurosci Lett 303: 149–152

    Article  PubMed  CAS  Google Scholar 

  20. Abad C, Martinez C, Leceta J et al. (2001) Pituitary adenylate cyclase-activating polypeptide inhibits collagen-induced arthritis: an experimental immunomodulatory therapy. J Immunol 167: 3182–3189

    PubMed  CAS  Google Scholar 

  21. Cao YQ, Mantyh PW, Carlson EJ et al. (1998) Primary afferent tachykinins are required to experience moderate to intense pain. Nature 392: 390–394

    Article  PubMed  CAS  Google Scholar 

  22. Marshall KW, Chiu B, Inman RD (1990) Substance P and arthritis: analysis of plasma and synovial fluid levels. Arthritis Rheum 33: 87–90

    Article  PubMed  CAS  Google Scholar 

  23. Menkes CJ, Renoux M, Laoussadi S et al. (1993) Substance P levels in the synovium and synovial fluid from patients with rheumatoid arthritis and osteoarthritis. J Rheumatol 20: 714–717

    PubMed  CAS  Google Scholar 

  24. von Banchet GS, Richter J, Hückel M et al. (2007) Fibroblast-like synovial cells from normal and inflamed knee joints differently affect the expression of pain-related receptors in sensory neurones: a co-culture study. Arthritis Res Ther 9: R6

    Article  CAS  Google Scholar 

  25. Krause JE, DiMaggio DA, McCarson KE (1995) Alterations in neurokinin 1 receptor gene expression in models of pain and inflammation. Can J Physiol Pharmacol 73: 854–859

    PubMed  CAS  Google Scholar 

  26. Janson W, Stein C (2003) Peripheral opioid analgesia. Curr Pharm Biotechnol 4: 270–274

    Article  PubMed  CAS  Google Scholar 

  27. Shen H, Aeschlimann A, Reisch N et al. (2005) Kappa and delta opioid receptors are expressed but down-regulated in fibroblast-like synoviocytes of patients with rheumatoid arthritis and osteoarthritis. Arthritis Rheum 52: 1402–1410

    Article  PubMed  CAS  Google Scholar 

  28. Gunji N, Nagashima M, Asano G, Yoshino S (2000) Expression of kappa-opioid receptor mRNA in human peripheral blood lymphocytes and the relationship between its expression and the inflammatory changes in rheumatoid arthritis. Rheumatol Int 19: 95–100

    Article  PubMed  CAS  Google Scholar 

  29. Walker JS (2003) Anti-inflammatory effects of opioids. Adv Exp Med Biol 521:148–160

    PubMed  CAS  Google Scholar 

  30. Engler A, Toma V, Mousa SA et al. (2008) Differential expression of proenkephalin in synovial tissues from patients with osteoarthritis and rheumatoid arthritis. Posterpräsentation 12th World Congress on Pain, Glasgow, UK

  31. Likar R, Schäfer M, Paulak F et al. (1997) Intraarticular morphine analgesia in chronic pain patients with osteoarthritis. Anesth Analg 84: 1313–1317

    Article  PubMed  CAS  Google Scholar 

  32. Takeba Y, Suzuki N, Kaneko A et al. (2001) Endorphin and enkephalin ameliorate excessive synovial cell functions in patients with rheumatoid arthritis. J Rheumatol 28: 2176–2183

    PubMed  CAS  Google Scholar 

  33. Kalso E, Smith L, McQuay HJ, Andrew Moore R (2002) No pain, no gain: clinical excellence and scientific rigour--lessons learned from IA morphine. Pain 98: 269–275

    Article  PubMed  CAS  Google Scholar 

  34. Stein A, Yassouridis A, Szopko C et al. ((1999) Intraarticular morphine versus dexamethasone in chronic arthritis. Pain 83: 525–532

    Article  PubMed  CAS  Google Scholar 

  35. Zeidan A, Kassem R, Nahleh N et al. (2008) Intraarticular tramadol-bupivacaine combination prolongs the duration of postoperative analgesia after outpatient arthroscopic knee surgery. Anesth Analg 107:292–299

    Article  PubMed  CAS  Google Scholar 

  36. Engler A, Aeschlimann A, Simmen BR et al. (2007) Expression of transient receptor potential vanilloid 1 (TRPV1) in synovial fibroblasts from patients with osteoarthritis and rheumatoid arthritis. Biochem Biophys Res Commun 359: 884–888

    Article  PubMed  CAS  Google Scholar 

  37. Gavva NR (2008) Body-temperature maintenance as the predominant function of the vanilloid receptor TRPV1. Trends Pharmacol Sci [Epub ahead of print]

  38. Reisch N, Aeschlimann A, Michel BA et al. (2005) Expression des Purinoceptors P2X4 in synovialen Fibroblasten von Patienten mit Arthrose und rheumatoider Arthritis. Schmerz 19 (Suppl1): S127

    Google Scholar 

  39. Tsuda M, Shigemoto-Mogami Y, Koizumi S et al. (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424: 778–783

    Article  PubMed  CAS  Google Scholar 

  40. Thompson SW, Bennett DL, Kerr BJ et al. (1999) Brain-derived neurotrophic factor is an endogenous modulator of nociceptive responses in the spinal cord. Proc Natl Acad Sci U S A 96: 7714–7718

    Article  PubMed  CAS  Google Scholar 

  41. Pezet S, Malcangio M, McMahon SB (2002) BDNF: a neuromodulator in nociceptive pathways? Brain Res Brain Res Rev 40: 240–249

    Article  PubMed  CAS  Google Scholar 

  42. Coull JA, Beggs S, Boudreau D et al. (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438: 1017–1021

    Article  PubMed  CAS  Google Scholar 

  43. Engler A, Reisch N, Aeschlimann A et al. (2006) Expression of P2X4 purinoceptors in synovial fibroblasts from patients with osteoarthritis and rheumatoid arthritis. Posterpräsentation 5th Day of Clinical Research, Zürich USZ

  44. Weidler C, Holzer C, Harbuz M et al. (2005) Low density of sympathetic nerve fibres and increased density of brain derived neurotrophic factor positive cells in RA synovium. Ann Rheum Dis 64: 13–20

    Article  PubMed  CAS  Google Scholar 

  45. Sprott H, Toma V, Engler A et al. (2008) ATP induces gene expression and extracellular release of BDNF by cultured osteoarthritis synovial fibroblasts. Posterpräsentation 12th World Congress on Pain, Glasgow, UK

  46. Egle UT, Hoffmann SO, Lehmann KA, Nix WA (Hrsg) (2003) Handbuch Chronischer Schmerz. Schattauer, Stuttgart New York, S 32–33

  47. Leffler A, Kistner K, Frank G et al. (2008) The partial opioid receptor agonist buprenorphine potently blocks voltage-gated sodium channels via the local anaesthetic binding site. Posterpräsentation 12th World Congress on Pain, Glasgow, UK

  48. Warncke T, Jørum E, Stubhaug A (1997) Local treatment with the N-methyl-D-aspartate receptor antagonist ketamine, inhibit development of secondary hyperalgesia in man by a peripheral action. Neurosci Lett 227: 1–4

    Article  PubMed  CAS  Google Scholar 

  49. Koppert W, Zeck S, Blunk JA et al. (1999) The effects of intradermal fentanyl and ketamine on capsaicin-induced secondary hyperalgesia and flare reaction. Anesth Analg 89: 1521–1527

    Article  PubMed  CAS  Google Scholar 

  50. King EW, Audette K, Athman GA et al. (2005) Transcutaneous electrical nerve stimulation activates peripherally located alpha-2A adrenergic receptors. Pain 115: 364–373

    Article  PubMed  CAS  Google Scholar 

  51. Michalsen A, Klotz S, Lüdtke R et al. (2003) Effectiveness of Leech Therapy in Osteoarthritis of the Knee. A Randomized, Controlled Trial. Ann Intern Med 139: 724–730

    PubMed  Google Scholar 

  52. Michalsen A, Lüdtke R, Cesur O et al. (2008) Effectiveness of leech therapy in women with symptomatic arthrosis of the first carpometacarpal joint: a randomized controlled trial. Pain 137: 452–459

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Sprott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sprott, H. Periphere Mechanismen von Gelenkschmerzen mit speziellem Fokus auf den synovialen Fibroblasten. Z. Rheumatol. 67, 640–645 (2008). https://doi.org/10.1007/s00393-008-0354-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-008-0354-x

Schlüsselwörter

Keywords

Navigation