Skip to main content
Log in

Lactobacillus suntoryeus inhibits pro-inflammatory cytokine expression and TLR-4-linked NF-κB activation in experimental colitis

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Objective

Lactic acid bacteria (LAB) can improve disturbances of indigenous microflora as well as inflammatory bowel diseases (IBD) such as ulcerative colitis and Crohn’s disease. We examined the anticolitic effect of Lactobacillus suntoryeus HY7801, which inhibited toll-like receptor (TLR)-4-linked NF-κB activation in human embryonic kidney (HEK) cells, in 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitic mice.

Materials and methods

We measured the ability of commercial and intestinal LAB to inhibit lipopolysaccharide (LPS)-stimulated, TLR-4-linked NF-κB activation in HEK cells, as well as to inhibit colitis outcomes in TNBS-induced colitic mice. We also measured levels of the inflammatory markers, interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-6, and their transcription factor, NF-κB, in intestinal mucosa by enzyme-linked immunosorbent assay and immunoblotting.

Results and discussion

LAB inhibited TLR-4-linked NF-κB activation, and L. suntoryeus HY7801 was the most potent inhibitor. Intrarectal treatment of TNBS in mice caused colon shortening and also increased colonic expression of IL-1β, IL-6, and TNF-α expression. However, oral administration of Lactobacillus HY7801 (100 mg/kg) inhibited colon shortening (p < 0.001) and myeloperoxidase activity in TNBS-induced colitic mice (p < 0.0002) and also decreased colonic expression of \(IL - 1\mathop \beta \limits_ \cdot \) (p < 0.003), IL-6 (p < 0.0001), and TNF-α (p < 0.0001). Lactobacillus HY7801 inhibited the NF-κB activation and TLR-4 expression induced by TNBS, as well as the expression of cyclooxygenase 2. Lactobacillus HY7801 also reduced the activity of intestinal bacterial glycosaminoglycan degradation and β-glucuronidase induced by TNBS.

Conclusion

L. suntoryeus HY7801 can improve colitis via the inhibition of TLR-4-linked NF-κB activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

IBD:

inflammatory bowel disease

DMEM:

Dulbecco’s modified Eagle’s medium

ECL:

enhanced chemiluminescence

ELISA:

enzyme-linked immunosorbent assay

HEK:

human embryonic kidney

IL:

interleukin

LAB:

lactic acid bacteria

LPS:

lipopolysaccharide

RIPA:

radio-immunoprecipitation assay

TLR:

toll-like receptor

TNBS:

2,4,6-trinitrobenzenesulfonic acid

TNF:

tumor necrosis factor

References

  1. Benno P, Leijonmarck CE, Monsen U, Uribe A (1993) Functional alteration of the microflora in patients with ulcerative colitis. Scand J Gastroenterol 28:839–844

    Article  PubMed  CAS  Google Scholar 

  2. Berrebi D, Languepin J, Ferkdadji L, Foussat A, De Lagausie P, Paris R, Emilie D, Mougenot JF, Cezard JP, Navarro J, Peuchmaur M (2003) Cytokines, chemokine receptors, and homing molecule distribution in the rectum and stomach of pediatric patients with ulcerative colitis. J Pediatr Gastroenterol Nutr 37:300–308

    Article  PubMed  CAS  Google Scholar 

  3. Gorbach SL, Nahas L (1968) Studies of intestinal microflora. V. Fecal microbial ecology in ulcerative colitis and regional enteritis, relationship to severity of disease and chemotherapy. Gastroenterology 54:575–587

    PubMed  CAS  Google Scholar 

  4. Binder V (2004) Epidemiology of IBD during the twentieth century: an integrated view. Best Pract Res Clin Gastroenterol 18:463–479

    Article  PubMed  Google Scholar 

  5. Chandran P, Satthaporn Robins A, Eremin O (2003) Inflammatory bowel disease: dysfunction of GALT and gut bacterial flora (II). Surgeon 1:125–136

    Article  PubMed  CAS  Google Scholar 

  6. Hill MJ, Drasar BS (1975) The normal colonic bacterial flora. Gut 16:318–323

    Article  PubMed  CAS  Google Scholar 

  7. Simon GL, Gorbach SL (1984) Intestinal flora in health and disease. Gastroenterology 86:174–193

    PubMed  CAS  Google Scholar 

  8. Chung KT, Fulk GE, Slein MW (1975) Tryptophanase of fecal flora as a possible factor in the etiology of colon cancer. J Natl Cancer Inst 54:1073–1078

    PubMed  CAS  Google Scholar 

  9. Ganguly NK, Kingham JG, Lloyd B, Lloyd RS, Price CP, Triger DR, Wright R (1978) Acid hydrolases in monocytes from patients with inflammatory bowel disease, chronic liver disease, and rheumatoid arthritis. Lancet 1(8073):1073–1075

    Article  PubMed  CAS  Google Scholar 

  10. Rhodes JM, Gallimore R, Elias E (1985) Fecal mucus degrading glycosidase in ulcerative colitis and Crohn’s disease. Gut 26:761–765

    Article  PubMed  CAS  Google Scholar 

  11. Jung HC, Eckmann I, Yang SK, Panja A, Fierer J, Morzycka-Worblewska E, Kagnoff MF (1995) A distinct array of proinflammatory cytokine is expressed in human colon epithelia cells in response to bacterial invasion. J Clin Invest 95:55–65

    Article  PubMed  CAS  Google Scholar 

  12. Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F (1999) Toll-like receptor-4 mediates lipolysaccharide-induced signal transduction. J Biol Chem 274:10689–10692

    Article  PubMed  CAS  Google Scholar 

  13. Ingalls RR, Heine H, Lien E, Yoshimura A, Glenbock D (1999) Lipopolysaccharide recognition, CD14, and lipopolysaccharide receptors. Infect Dis Clin North Am 13:341–353

    Article  PubMed  CAS  Google Scholar 

  14. Cario E, Pldolsky DK (2000) Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 68:7010–1017

    Article  PubMed  CAS  Google Scholar 

  15. Collins MP, Gibson GR (1999) Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am J Clin Nutr 69:s1052–s1057

    Google Scholar 

  16. Campieri M, Gionchetti P (1999) Probiotics in inflammatory bowel disease: new insight to pathogenesis or a possible therapeutic alternative. Gastroenterology 116:1246–1260

    Article  PubMed  CAS  Google Scholar 

  17. Perdigon G, de Jorrat WEB, de Petrino SF, Valerde de Budeguer M (1991) Effect of oral administration of Lactobacillus casei on various biological functions of the host. Food Agric Immunol 3:93–102

    Article  Google Scholar 

  18. Tabuchi M, Ozaki M, Tamura A, Yamada N, Ishida T, Hosoda M, Hosono A (2003) Antidiabetic effect of Lactobacillus GG in streptozotocin-induced diabetic rats. Biosci Biotechnol Biochem 67:1421–1424

    Article  PubMed  CAS  Google Scholar 

  19. Taranto MP, Medici M, Perdigon G, Ruiz Holgado AP, Valdez GF (1998) Evidence for hypoglycemic effect of Lactobacillus reuteri in hypercholesterolemic mice. J Dairy Sci 81:2336–2340

    Article  PubMed  CAS  Google Scholar 

  20. Daniel C, Poiret S, Goudercourt D, Dennin V, Leyer G, Pot B (2006) Selecting lactic acid bacteria for their safety and functionality by use of a mouse colitis model. Appl Environ Microbiol 72:5799–5805

    Article  PubMed  CAS  Google Scholar 

  21. Han W, Mercenier A, Ait-Belgnaoui A, Pavan A, Lamine F, van Swam II, Kleerebezem M, Salvador-Cartier C, Hisbergues M, Bueno L, Theodorou V, Fioramonti J (2006) Improvement of an experimental colitis in rats by lactic acid bacteria producing superoxide dismutase. Inflamm Bowel Dis 12:1044–1052

    Article  PubMed  Google Scholar 

  22. Peran L, Sierra S, Comalada M, Lara-Villoslada F, Bailon E, Nieto A, Olivares M, Zarzuelo A, Xaus J, Galvez J (2007) A comparative study of the preventative effects exerted by two probiotics, Lactobacillus reuteri and Lactobacillus fermentum, in the trinitrobenzenesulfonic acid model of rat colitis. Br J Nutr 97:96–103

    Article  PubMed  CAS  Google Scholar 

  23. Chung YW, Choi JH, Oh TY, Eun CS, Han DS (2007) Lactobacillus casei prevents the development of dextran sulfate sodium-induced colitis in toll-like receptor 4 mutant mice. Clin Exp Immunol 151:182–189

    PubMed  Google Scholar 

  24. Grabig A, Pcclik D, Guzy C, Dankof A, Baumgart DC, Erckenbrecht J, Raupach B, Sonnenborn U, Eckert J, Schumann RR, Wiedenmann B, Dignass AU, Sturm A (2006) Escherichia coli strain Nissle 1917 ameliorates experimental colitis via toll-like receptor 2- and toll-like receptor 4-dependent pathways. Infect Immun 74:4075–4082

    Article  PubMed  CAS  Google Scholar 

  25. Peran L, Camuesco D, Comalada M, Bailon E, Henriksson A, Xaus J, Zarzuelo A, Galvez J (2007) A comparative study of the preventative effects exerted by three probiotics, Bifidobacterium lactis, Lactobacillus casei and Lactobacillus acidophilus, in the TNBS model of rat colitis. J Appl Microbiol 103:836–844

    Article  PubMed  CAS  Google Scholar 

  26. Han SY, Huh CS, Ahn YT, Lim KS, Baek YJ, Kim DH (2005) Hepatoprotective effect of lactic acid bacteria. J Microbiol Biotechnol 15:887–890

    CAS  Google Scholar 

  27. Fukata M, Chen A, Klepper A, Krishnareddy S, Vamadevan AS, Thomas LS, Xu R, Inoue H, Arditi M, Dannenberg AJ, Abreu MT (2006) Cox-2 is regulated by toll-like receptor-4 (TLR4) signaling: role in proliferation and apoptosis in the intestine. Gastroenterology 131:862–877

    Article  PubMed  CAS  Google Scholar 

  28. Hollenbach E, Vieth M, Rosessner A, Neumann M, Malfertheiner P, Naumann M (2005) Inhibition of RICK/Nuclear factor-kB and p38 signalling attenuates the inflammatory response in a murine model of Crohn Disease. J Biol Chem 280:14981–14988

    Article  PubMed  CAS  Google Scholar 

  29. Mullane KM, Kraemer R, Smith B (1985) Myeloperoxidase activity as a quantitative assessment of neutrophil infiltration into ischemic myocardium. J Pharmacol Methods 14:157–167

    Article  PubMed  CAS  Google Scholar 

  30. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  31. Shin YW, Bae EA, Kim SS, Lee YC, Kim DH (2005) Effect of ginsenoside Rb1 and compound K in chronic oxazolone-induced mouse dermatitis. Int Immunopharmacol 5:1183–1191

    Article  PubMed  CAS  Google Scholar 

  32. Duchmann R, Kaiser I, Hermann E, Mayet W, Ewk K, Meyer zum Buschenfelde KH (1995) Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease. Clin Exp Immunol 102:448–455

    PubMed  CAS  Google Scholar 

  33. Kruis W (2004) Antibiotics and probiotics in inflammatory bowel disease. Aliment Pharmacol Ther 20(suppl. 4):75–78

    Article  PubMed  CAS  Google Scholar 

  34. Sartor RB (2004) Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics and prebiotics. Gastroenterology 126:1620–1633

    Article  PubMed  Google Scholar 

  35. Bowen JM, Stringer AM, Gibson RJ, Yeoh AS, Hannam S, Keefe DM (2007) VSL#3 probiotic treatment reduces chemotherapy-induced diarrhea and weight loss. Cancer Biol Ther 6:1449–1454

    Article  PubMed  Google Scholar 

  36. Bai A, Lu N, Guo Y, Fan X (2008) Tanshinone IIA ameliorates trinitrobenzene sulfonic acid (TNBS)-induced murine colitis. Dig Dis Sci 53:421–428

    Article  PubMed  CAS  Google Scholar 

  37. Barthet M, Dubucquoy L, Garcia S, Gasmi S, Descreumaux P, Colombel JF, Grimaud JC, Iovanna J, Dagorn JC (2003) Pancreatic changes in TNBS-induced colitis in mice. Gastroenterol Clin Biol 27:895–900

    PubMed  Google Scholar 

Download references

Acknowledgement

This study was supported by a grant from Korea Yakult (2005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Hyun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JH., Lee, B., Lee, HS. et al. Lactobacillus suntoryeus inhibits pro-inflammatory cytokine expression and TLR-4-linked NF-κB activation in experimental colitis. Int J Colorectal Dis 24, 231–237 (2009). https://doi.org/10.1007/s00384-008-0618-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-008-0618-6

Keywords

Navigation