Skip to main content

Advertisement

Log in

The Alpine snow-albedo feedback in regional climate models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The effect of the snow-albedo feedback (SAF) on 2m temperatures and their future changes in the European Alps is investigated in the ENSEMBLES regional climate models (RCMs) with a focus on the spring season. A total of 14 re-analysis-driven RCM experiments covering the period 1961–2000 and 10 GCM-driven transient climate change projections for 1950–2099 are analysed. A positive springtime SAF is found in all RCMs, but the range of the diagnosed SAF is large. Results are compared against an observation-based SAF estimate. For some RCMs, values very close to this estimate are found; other models show a considerable overestimation of the SAF. Net shortwave radiation has the largest influence of all components of the energy balance on the diagnosed SAF and can partly explain its spatial variability. Model deficiencies in reproducing 2m temperatures above snow and ice and associated cold temperature biases at high elevations seem to contribute to a SAF overestimation in several RCMs. The diagnosed SAF in the observational period strongly influences the estimated SAF contribution to twenty first century temperature changes in the European Alps. This contribution is subject to a clear elevation dependency that is governed by the elevation-dependent change in the number of snow days. Elevations of maximum SAF contribution range from 1500 to 2000 m in spring and are found above 2000 m in summer. Here, a SAF contribution to the total simulated temperature change between 0 and 0.5 °C until 2099 (multi-model mean in spring: 0.26 °C) or 0 and 14 % (multi-model mean in spring: 8 %) is obtained for models showing a realistic SAF. These numbers represent a well-funded but only approximate estimate of the SAF contribution to future warming, and a remaining contribution of model-specific SAF misrepresentations cannot be ruled out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Appenzeller C, Begert M, Zenklusen E, Scherrer SC (2008) Monitoring climate at Jungfraujoch in the high Swiss Alpine region. Sci Total Environ 391(2–3):262–268. doi:10.1016/j.scitotenv.2007.10.005

    Article  Google Scholar 

  • Armstrong RL, Brun E (2008) Snow and climate: physical processes, surface energy exchange and modeling. Cambridge University Press, Cambridge

    Google Scholar 

  • Ban N, Schmidli J, Schär C (2014) Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations. J Geophys Res Atmos 119(13):7889–7907. doi:10.1002/2014JD021478

    Article  Google Scholar 

  • Ban N, Schmidli J, Schär C (2015) Heavy precipitation in a changing climate: does short-term summer precipitation increase faster? Geophys Res Lett 42(4):1165–1172. doi:10.1002/2014GL062588

    Article  Google Scholar 

  • Barry R, Gan TY (2011) The global cryosphere: past, present and future. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Barry RG, Chorley RJ (2010) Atmosphere, weather and climate, 9th edn. Routledge, London and New York

    Google Scholar 

  • Boone A, Etchevers P (2001) An intercomparison of three snow schemes of varying complexity coupled to the same land surface model: local-scale evaluation at an Alpine site. J Hydrometeorol 2(4):374–394. doi:10.1175/1525-7541(2001)002<0374:AIOTSS>2.0.CO;2

    Article  Google Scholar 

  • Bradley RS, Keimig FT, Diaz HF (2004) Projected temperature changes along the American cordillera and the planned GCOS network. Geophys Res Lett 31:L16210. doi:10.1029/2004GL020229

    Article  Google Scholar 

  • Buzzi M (2008) Challenges in operational numerical weather prediction at high resolution in complex terrain. Ph.D. thesis, ETH Zurich

  • Ceppi P, Scherrer SC, Fischer AM, Appenzeller C (2012) Revisiting Swiss temperature trends 1959–2008. Int J Climatol 32(2):203–213. doi:10.1002/joc.2260

    Article  Google Scholar 

  • Cess RD, Potter GL, Zhang M-H, Blanchet J-P, Chalita S, Colman R, Dazlich DA, del Genio AD, Dymnikov V, Galin V, Jerrett D, Keup E, Lacis AA, Le Treut H, Liang X-Z, Mahfouf J-F, McAvaney BJ, Meleshko VP, Mitchell JFB, Morcrette J-J, Norris PM, Randall DA, Rikus L, Roeckner E, Royer J-F, Schlese U, Sheinin DA, Slingo JM, Sokolov AP, Taylor KE, Washington WM, T WR, Yagai I (1991) Interpretation of snow-climate feedback as produced by 17 general circulation models. Science 253(5022):888–892. doi:10.1126/science.253.5022.888

    Article  Google Scholar 

  • Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Colman R (2003) A comparison of climate feedbacks in general circulation models. Clim Dyn 20(7–8):865–873. doi:10.1007/s00382-003-0310-z

    Google Scholar 

  • Doms G, Frstner J, Heise E, Herzog H-J, Mironov D, Raschendorfer M, Reinhardt T, Ritter B, Schrodin R, Schulz J-P, Vogel G (eds) (2011) A description of the nonhydrostatic regional COSMO Model. Part II: physical parameterization, COSMO Consortium for small-scale modelling. www.cosmo-model.org

  • Fernandes R, Zhao H, Wang X, Key J, Qu X, Hall A (2009) Controls on Northern Hemisphere snow albedo feedback quantified using satellite Earth oservations. Geophys Res Lett 36:L21702. doi:10.1029/2009GL040057

    Article  Google Scholar 

  • Giorgi F, Hurrell JW, Marinucci MR, Beniston M (1997) Elevation dependency of the surface climate change signal: a model study. J Clim 10(2):288–296. doi:10.1175/1520-0442(1997)010<0288:EDOTSC>2.0.CO;2

    Article  Google Scholar 

  • Graversen RG, Langen PL, Mauritsen T (2014) Polar amplification in CCSM4: Contributions from the lapse rate and surface albedo feedbacks. J Clim 27(12):4433–4450. doi:10.1175/JCLI-D-13-00551.1

    Article  Google Scholar 

  • Hall A (2004) The role of surface albedo feedback in climate. J Clim 17(7):1550–1568. doi:10.1175/1520-0442(2004)017<1550:TROSAF>2.0.CO;2

    Article  Google Scholar 

  • Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, Braun A, Colette A, Déqué M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A, Martin E, van Meijgaard E, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana J-F, Teichmann C, Valentini R, Vautard R, Weber B, Yiou P (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change 14(2):563–578. doi:10.1007/s10113-013-0499-2

    Article  Google Scholar 

  • Kendon EJ, Roberts NM, Fowler HJ, Roberts MJ, Chan SC, Senior CA (2014) Heavier summer downpours with climate change revealed by weather forecast resolution model. Nature Clim Change 4:570–576. doi:10.1038/nclimate2258

    Article  Google Scholar 

  • Kotlarski S, Bosshard T, Lüthi D, Pall P, Schär C (2012) Elevation gradients of European climate change in the regional climate model COSMO-CLM. Clim Change 112(2):189–215. doi:10.1007/s10584-011-0195-5

    Article  Google Scholar 

  • Kotlarski S, Keuler K, Christensen OB, Colette A, Déqué M, Gobiet A, Goergen K, Jacob D, Lüthi D, van Meijgaard E, Nikulin G, Schär C, Teichmann C, Vautard R, Warrach-Sagi K, Wulfmeyer V (2014) Regional climate modelling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev 7(1):1297–1333. doi:10.5194/gmd-7-1297-2014

    Article  Google Scholar 

  • Kotlarski S, Lüthi D, Schär C (2015) The elevation dependency of 21st century European climate change: an RCM ensemble perspective. Int J Climatol. doi:10.1002/joc.4254

    Google Scholar 

  • Laternser M, Schneebeli M (2003) Long-term snow climate trends of the Swiss Alps (1931–99). Int J Climatol 23(7):733–750. doi:10.1002/joc.912

    Article  Google Scholar 

  • Lawrence DM, Slater AG (2010) The contribution of snow condition trends to future ground climate. Clim Dyn 34(7–8):969–981. doi:10.1007/s00382-009-0537-4

    Article  Google Scholar 

  • Lawrence DM, Oleson KW, Flanner MG, Thornton PE, Swenson SC, Lawrence PJ, Zeng X, Yang Z-L, Levis S, Sakaguchi K, Bonan GB, Slater AG (2011) Parameterization improvements and functional and structural advances in version 4 of the community land model. J Adv Model Earth Syst 3:M03001. doi:10.1029/2011MS000045

    Google Scholar 

  • van der Linden P, Mitchell JFB (eds) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project, Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK

  • Marty C (2008) Regime shift of snow days in Switzerland. Geophys Res Lett 35:L12501. doi:10.1029/2008GL033998

    Article  Google Scholar 

  • Nakićenović N, Swart R (eds) (2000) Emissions scenarios. A special report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Ohmura A (2001) Physical basis for the temperature-based melt-index methhod. J Appl Meteorol 40(4):753–761. doi:10.1175/1520-0450(2001)040<0753:PBFTTB>2.0.CO;2

    Article  Google Scholar 

  • Peixoto JP, Oort AH (1992) Physics of climate. American Institute of Physics, New York

    Google Scholar 

  • Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsythe N, Fowler H, Greenwood G, Hashmi MZ, Liu XD, Miller JR, Ning L, Ohmura A, Palazzi E, Rangwala I, Schöner W, Severskiy I, Shahgedanova M, Wang MB, Williamson SN, Yang DQ (2015) Elevation-dependent warming in mountain regions of the world. Nature Clim Change 5(5):424–430. doi:10.1038/nclimate2563

    Article  Google Scholar 

  • Pepin NC, Lundquist JD (2008) Temperature trends at high elevations: patterns across the globe. Geophys Res Lett 35:L14701. doi:10.1029/2008GL034026

    Article  Google Scholar 

  • Pirrazini R (2009) Challenges in snow and ice albedo parameterizations. Geophysica 45(1–2):41–62

    Google Scholar 

  • Qu X, Hall A (2007) What controls the strength of snow-albedo feedback? J Climate 20(15):3971–3981. doi:10.1175/JCLI4186.1

    Article  Google Scholar 

  • Räisänen J, Eklund J (2012) 21st century changes in snow climate in Northern Europe: a high-resolution view from ENSEMBLES regional climate models. Clim Dyn 38(11–12):2575–2591. doi:10.1007/s00382-011-1076-3

    Article  Google Scholar 

  • Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorol Z 17(4):347–348. doi:10.1127/0941-2948/2008/0309

    Article  Google Scholar 

  • Scherrer SC, Appenzeller C, Laternser M (2004) Trends in Swiss Alpine snow days: the role of local- and large-scale climate variability. Geophys Res Lett 31:L13215. doi:10.1029/2004GL020255

    Article  Google Scholar 

  • Scherrer SC, Ceppi P, Croci-Maspoli M, Appenzeller C (2012) Snow-albedo feedback and Swiss spring temperature trends. Theor Appl Climatol 110(4):509–516. doi:10.1007/s00704-012-0712-0

    Article  Google Scholar 

  • Scherrer SC, Wüthrich C, Croci-Maspoli M, Weingartner R, Appenzeller C (2013) Snow variability in the Swiss Alps 1864–2009. Int J Clim 33(15):3162–3173. doi:10.1002/joc.3653

    Article  Google Scholar 

  • Soden BJ, Held IM (2006) An assessment of climate feedbacks in coupled ocean-atmosphere models. J Clim 19(14):3354–3360. doi:10.1175/JCLI3799.1

    Article  Google Scholar 

  • Steger C, Kotlarski S, Jonas T, Schär C (2013) Alpine snow cover in a changing climate: a regional climate model perspective. Clim Dyn 41(3–4):735–754. doi:10.1007/s00382-012-1545-3

    Article  Google Scholar 

  • Uppala SM, Kållberg PW, Simmons AJ, Andrae U, da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • US Geological Survey (2014) Global 30 arc-second elevation (GTOPO30). https://lta.cr.usgs.gov/GTOPO30

  • Vaughan DG, Comiso JC, Allison I, Carrasco J, Kaser G, Kwok R, Mote P, Murray T, Paul F, Ren J, Rignot E, Solomina O, Steffen K, Zhang T (2013) Observations: cryosphere. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, J B, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Winton M (2006) Surface albedo feedback estimates for the AR4 climate models. J Clim 19(3):359–365. doi:10.1175/JCLI3624.1

    Article  Google Scholar 

Download references

Acknowledgments

The ENSEMBLES data used in this work was funded by the EU FP6 Integrated Project ENSEMBLES (Contract No. 505539) whose support is gratefully acknowledged. This research was partly funded by the Swiss National Science Foundation through the SNSF Sinergia project CRSII2_136279 “The Evolution of Mountain Permafrost in Switzerland” (TEMPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Kotlarski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winter, K.J.P.M., Kotlarski, S., Scherrer, S.C. et al. The Alpine snow-albedo feedback in regional climate models. Clim Dyn 48, 1109–1124 (2017). https://doi.org/10.1007/s00382-016-3130-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3130-7

Keywords

Navigation