Skip to main content
Log in

A climatological perspective of water vapor at the UTLS region over different global monsoon regions: observations inferred from the Aura-MLS and reanalysis data

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Aura-MLS observations of eight years from 2004 to 2011 have been utilized to understand the hydration and the dehydration mechanism over the northern and the southern hemispheric monsoon (NH and SH) regions. The monsoon regions considered are the Asian Summer Monsoon, East Asian Summer Monsoon, Arizona Monsoon (AM), North African Monsoon, South American Monsoon and the Australian Monsoon. The annual cycle of water vapor as expected shows maxima over the NH during June–August and during December–February over the SH. The time taken by the air parcels over the NH monsoon regions is found to be different compared to that over the SH monsoon regions. The analysis shows the concentration of water vapor in the upper troposphere and the lower stratosphere (UTLS) has not changed over these eight years in both the hemispheres during their respective monsoon seasons. The present analysis show different processes viz., direct overshooting convection, horizontal advection, temperature and cirrus clouds in influencing the distribution of water vapor to the UTLS over these different monsoon regions. Analysis of the UTLS water vapor with temperature and ice water content shows that the AM is hydrating the stratosphere compared to all the other monsoon regions where the water vapor is getting dehydrated. Thus it is envisaged that the present results will have important implications in understanding the exchange processes across the tropopause over the different monsoon regions and its role in stratosphere chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adams DK, Comrie AC (1997) The North American Monsoon. Bull Amer Meteor Soc 78: 2197–2213

  • Bannister RN, O’Neill A, Gregory AR, Nissen KM (2004) The role of the South-East Asian monsoon and other seasonal features in creating the ‘tape recorder’ signal in the unified model. Q J R Meteorol Soc 130:1531–1554. doi:10.1256/qj.03.106

    Article  Google Scholar 

  • Bolton D (1980) The computation of equivalent potential temperature. Mon Wea Rev 108:1046–1053

    Article  Google Scholar 

  • Brewer AW (1949) Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quar J R Met Soc 75:351–363

    Article  Google Scholar 

  • Das SS (2009) A new perspective on MST radar observations of stratospheric intrusions into troposphere associated with tropical cyclone. Geophys Res Lett 36:L15821. doi:10.1029/2009GL039184

    Article  Google Scholar 

  • Das SK, Chiang CW, Nee JB (2011) Influence of tropical easterly jet on upper tropical cirrus: an observational study from CALIPSO, Aura‐MLS, and NCEP/NCAR data. J Geophys Res 116. doi:10.1029/2011JD015923D12204

  • Davidson E, Bride Mc, McAvaney BJ (1983) The onset of Australian monsoon during winter MONEX: synoptic aspects. Mon Wea Rev 111:496–516

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Dessler AE, Kim H (1999) Determination of the amount of water vapour entering the stratosphere based on Halogen Occultation Experiment (HALOE) data. J Geophys Res 104:30605–30607

    Article  Google Scholar 

  • Devasthale A, Fueglistaler S (2010) A climatological perspective of deep convection penetrating the TTL during the Indian summer monsoon from the AVHRR and MODIS instruments. Atmos Chem Phys 10:4573–4582

    Article  Google Scholar 

  • Dvortsov VL, Solomon S (2001) Response of the stratospheric temperatures and ozone to past and future increases in stratospheric humidity. J Geophys Res 106(D7):7505–7514. doi:10.1029/2000JD900637

    Article  Google Scholar 

  • Flury T, Wu DL, Read WG (2012) Correlation among cirrus ice content, water vapour and temperature in the TTL as observed by CALIPSO and Aura/MLS. Atmos Chem Phys 12:683–691

    Article  Google Scholar 

  • Froidevaux I, Livesey NJ, Read WG, Jiang YB, Jimenez C, Filipiak MJ et al (2006) Early validation analyses of atmospheric profiles from EOS MLS on the AURA satellite. IEEE Trans Geosci Remote Sens 44(5):1106–1121

    Article  Google Scholar 

  • Fu R, Hu Y, Wright JS, Jiang JH, Dickinson RE, Chen M et al (2006) Short circuit of water vapour and polluted air to the global stratosphere by convective transport over the Tibetan Plateau. Proc Natl Acad Sci USA 103(15):5664–5669

    Article  Google Scholar 

  • Fueglistaler S, Bonnazzola M, Haynes PH, Peter T (2005) Stratospheric water vapour predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics. J Geophys Res 110:D08107. doi:10.1029/2004JD005516

    Google Scholar 

  • Fueglistaler S, Dessler A, Dunkerton T, Folkins I, Fu Q, Mote P (2009) Tropical tropopause layer. Rev Geophys 47:1004. doi:10.1029/2008RG000267

    Article  Google Scholar 

  • Fujinami H, Nomura S, Yasunari T (2005) Characteristics of diurnal variations in convection and precipitation over the southern Tibetan Plateau during summer. SOLA 1:49–52. doi:10.2151/sola.2005-014

    Article  Google Scholar 

  • Gettelman A, Salby ML, Sassi F (2002) The distribution and influence of convection in the tropical tropopause region. J Geophys Res 107(D10):4080. doi:10.1029/2001JD001048

    Article  Google Scholar 

  • Hastenrath S (2000) Interannual and longer term variability of upper-air circulation over the tropical Atlantic and west Africa in boreal summer. Int J Clim 20:1415–1430

    Google Scholar 

  • Hirose M, Nakamura K (2005) Spatial and diurnal variations of precipitation systems over Asia observed by the TRMM Precipitation Radar. J Geophys Res 110:D05106. doi:10.1029/2004JD004815

    Google Scholar 

  • Holton JR, Gettelman A (2001) Horizontal transport and dehydration in the stratosphere. Geophys Res Lett 28:2799–2802

    Article  Google Scholar 

  • Holton JR, Haynes PH, McIntyre ME, Douglass AR, Rood RB, Pfister L (1995) Stratosphere–troposphere exchange. Rev Geophys 33:403–439

    Article  Google Scholar 

  • James R, Bonazzola M, Legras B, Surbled K, Fueglistaler S (2008) Water vapour transport and dehydration above convective outflow during Asian monsoon. Geophys Res Lett 35. doi:10.1029/2008GL035441L20810

  • Lambert A, Read WG, Livesey NJ, Santee ML, Manney GL, Froidevaux L, Lambert D et al (2007) Validation of the Aura Microwave Limb Sounder stratospheric water vapour and nitrous oxide measurements. J Geophys Res 112(D24):D24S36. doi:10.1029/2007JD008724

    Google Scholar 

  • Lelieveld J, Brühl C, Jöckel P, Steil B, Crutzen PJ, Fischer H, Lelieveld J et al (2007) Stratospheric dryness: model simulations and satellite observations. Atmos Chem Phys 7:1313–1332

    Article  Google Scholar 

  • Liebmann B, Smith CA (1996) Description of a complete interpolated outgoing long wave radiation dataset. Bull Am Meteo Soc 77:1275–1277

    Google Scholar 

  • Liu C, Zipser E, Garrett T, Jiang JH, Su H (2007) How do the water vapour and carbon monoxide ‘‘tape recorders’’ start near the tropical tropopause? Geophys Res Lett 34. doi:10.1029/2006GL029234

  • Livesey NJ, Read WG, Froidevaux L, Lambert A, Manney GL, Pumphrey HC et al (2011) EOS MLS version V3.3 level 2 data quality and description document. Jet Propul. Lab., Pasadena, CA. http://mls.jpl.nasa.gov

  • Mote PW, Rosenlof KH, McIntyre ME, Carr ES, Gille JC, Holton JR et al (1996) An atmospheric tape recorder. The imprint of tropical tropopause temperatures on stratospheric water vapour. J Geophys Res 101:3989–4006. doi:10.1029/95JD03422

    Article  Google Scholar 

  • Newell RE, Gould Stewart S (1981) A stratospheric fountain? J Atmos Sci 38:2789–2796

    Article  Google Scholar 

  • Park M, Randel WJ, Gettelman A, Massie ST, Jiang JH (2007) Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers. J Geophys Res 112:D16309. doi:10.1029/2006JD008294

    Article  Google Scholar 

  • Petersen WA, Rutledge SA (2001) Regional variability in tropical convection: observations from TRMM. J Clim 14:3566–3586

    Article  Google Scholar 

  • Randel WJ, Moyer E, Park M, Jensen E, Bernath P, Walker K, Boone C (2012) J Geophys Res 117. doi:10.1029/2011JD016632

  • Rao TN, Uma KN, Rao DN, Fukao S (2008) Understanding the transportation process of tropospheric air entering thestratosphere from direct vertical air motion measurements over Gadanki and Kototabang. Geophys Res Lett 35:L15805. doi:10.1029/2008GL034220

    Article  Google Scholar 

  • Read WG, Lambert A, Bacmeister J, Cofield RE, Christensen LE, Cuddy DT et al (2007) EOS Aura Microwave Limb Sounder upper tropospheric and lower stratospheric humidity validation. J Geophys Res 112:D24S35. doi:10.1029/2007JD008752

    Google Scholar 

  • Rosenlof KH, Chiou EW, Chu WP, Johnson DG, Kelly KK, Michelsen HA, Nedoluha GE, Remsberg EE, Toon GC, McCormick MP (2001) Stratospheric water vapour increases over the past half-century. Geophys Res Lett 28:1195–1198. doi:10.1029/2000GL012502

    Article  Google Scholar 

  • Schneider T, O’Gorman PA, Levine XJ (2010) Water vapour and the dynamics of climate changes. Rev Geophys 48:RG3001. doi:10.1029/2009RG000302

    Article  Google Scholar 

  • Schwartz MJ et al (2008) Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements. J Geophys Res 113:D15S11. doi:10.1029/2007JD008783

    Google Scholar 

  • Shindell DT (2001) Climate and ozone response to increased stratospheric water vapour. Geophys Res Lett 28:1551–1554

    Article  Google Scholar 

  • Solomon S, Rosenlof KH, Portmann RW, Daniel JS, Davis SM, Sanford TJ, Plattner GK (2010) Contributions of stratospheric water vapour to decadal changes in the rate of global warming. Science 327:1219–1223. doi:10.1126/science.1182488

    Article  Google Scholar 

  • Tetens O (1930) Uber einige meteorologische Begriffe. Z. Geophys. 6:297–309

    Google Scholar 

  • Uma KN, Das SK, Das SS, Kumar KK (2013) Aura-MLS observations of water vapour entering the stratosphere over the Northern Bay of Bengal and East Equatorial Indian Ocean. Terr Atmos Ocea Sci 24(3):357–368. doi:10.3319/TAO.2012.11.06.01(A)

    Article  Google Scholar 

  • Uyeda H, Yamada H, Horikomi J, Shirooka R, Shimizu S, Liu L, Ueno K, Fujii H, Koike T (2001) Characteristics of convective clouds observed by a Doppler radar at Naqu on Tibetan Plateau during the GAME-Tibet IOP. J Meteorol Soc Jpn 79(1B):463–474

    Article  Google Scholar 

  • Wang PK (2003) Moisture plumes above thunderstorm anvils and their contributions to cross tropopause transport of water vapour in midlatitudes. J Geophys Res 108:4194. doi:10.1029/2002JD002581

    Article  Google Scholar 

  • Wang T, Dessler AE (2012) Analysis of cirrus in the tropical tropopause layer from CALIPSO and MLS data: a water perspective. J Geophys Res 117:D04211. doi:10.1029/2011JD016442

    Google Scholar 

  • Waters JW, Froidevaux L, Jarnot RF, Pickett HM, Read WG, Siegel PH et al (2006) The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite. IEEE Trans Geosci Remote Sens 44:1075–1092. doi:10.1109/TGRS.2006.873771

    Article  Google Scholar 

  • Wright JS, Fu R, Fueglistaler S, Liu Y, Zhang Y (2011) The influence of summertime convection over South-East Asia on water vapour in the tropical stratosphere. J Geophys Res 116:D12302. doi:10.1029/2010JD015416

    Article  Google Scholar 

  • Yasunari T, Miwa T (2006) Convective cloud systems over the Tibetan Plateau and their impact on mesoscale disturbances in the Meiyu/Baiu frontal zone. J Meteorol Soc Jpn 84(4):783–803

    Article  Google Scholar 

  • Zeng X, Lu E (2004) Globally unified monsoon onset and retreat indices. J Clim 17:2241–2248

    Article  Google Scholar 

  • Zhou JY, Lau KM (1999) Does a monsoon climate exist over South America? J Clim 11:1020–1040

    Article  Google Scholar 

Download references

Acknowledgments

The Aura-MLS data are downloaded from the Goddard Earth Sciences Data and Information Services Centre, the ERA-Interim from the ECMWF and the gridded OLR from the NOAA‐CIRES. The authors are thankful to the Director, SPL/VSSC for his constant support. Finally, the author would like to thank the Editor and the two anonymous reviewers for their constructive comments and suggestions which improve the manuscript greatly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Uma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uma, K.N., Das, S.K. & Das, S.S. A climatological perspective of water vapor at the UTLS region over different global monsoon regions: observations inferred from the Aura-MLS and reanalysis data. Clim Dyn 43, 407–420 (2014). https://doi.org/10.1007/s00382-014-2085-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2085-9

Keywords

Navigation