Skip to main content

Advertisement

Log in

Interpreting observed northern hemisphere snow trends with large ensembles of climate simulations

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Simulated variability and trends in Northern Hemisphere seasonal snow cover are analyzed in large ensembles of climate integrations of the National Center for Atmospheric Research’s Community Earth System Model. Two 40-member ensembles driven by historical radiative forcings are generated, one coupled to a dynamical ocean and the other driven by observed sea surface temperatures (SSTs) over the period 1981–2010. The simulations reproduce many aspects of the observed climatology and variability of snow cover extent as characterized by the NOAA snow chart climate data record. Major features of the simulated snow water equivalent (SWE) also agree with observations (GlobSnow Northern Hemisphere SWE data record), although with a lesser degree of fidelity. Ensemble spread in the climate response quantifies the impact of natural climate variability in the presence and absence of coupling to the ocean. Both coupled and uncoupled ensembles indicate an overall decrease in springtime snow cover that is consistent with observations, although springtime trends in most climate realizations are weaker than observed. In the coupled ensemble, a tendency towards excessive warming in wintertime leads to a strong wintertime snow cover loss that is not found in observations. The wintertime warming bias and snow cover reduction trends are reduced in the uncoupled ensemble with observed SSTs. Natural climate variability generates widely different regional patterns of snow trends across realizations; these patterns are related in an intuitive way to temperature, precipitation and circulation trends in individual realizations. In particular, regional snow loss over North America in individual realizations is strongly influenced by North Pacific SST trends (manifested as Pacific Decadal Oscillation variability) and by sea level pressure trends in the North Pacific/North Atlantic sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Atkinson DE, Brown R, Alt B, Agnew T, Bourgeois J, Burgess M, Duguay G, Henry Gea (2006) Canadian cryospheric response to an anomalous warm summer: a synthesis of the climate change action fund project, "The state of the arctic cryosphere during the extreme warm summer of 1998”. Atmos Ocean 44:347–375. doi:10.3137/ao.440403

    Article  Google Scholar 

  • Branstator G, Teng H (2010) Two limits of initial-value decadal predictability in a CGCM. J Clim 23:6292–6311. doi:10.1175/2010JCLI3678.1

    Article  Google Scholar 

  • Brown RD, Derksen C (2013) Is Eurasian October snow cover extent increasing? Environ Res Lett 8:024–006. doi:10.1088/1748-9326/8/2/024006

    Google Scholar 

  • Brown RD, Goodison BE (1996) Interannual variability in reconstructed canadian snow cover, 1915–1992. J Clim 9:1299–1318. doi:10.1175/1520-0442(1996)009<1299:IVIRCS>2.0.CO;2.

    Article  Google Scholar 

  • Brown R, Derksen C, Wang L (2007) Assessment of spring snow cover duration variability over northern Canada from satellite datasets. Remote Sens Environ 111:367–381. doi:10.1016/j.rse.2006.09.035

    Article  Google Scholar 

  • Brown RD, Mote PW (2009) The response of northern hemisphere snow cover to a changing climate*. J Clim 22:2124. doi:10.1175/2008JCLI2665.1.

    Article  Google Scholar 

  • Brown R, Derksen C, Wang L (2010) A multi-data set analysis of variability and change in Arctic spring snow cover extent, 1967-2008. J Geophys Res 115:D16111. doi:10.1029/2010JD013975

    Article  Google Scholar 

  • Brown RD, Robinson DA (2011) Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. Cyrosph 5:219–229. doi:10.5194/tc-5-219-2011

    Article  Google Scholar 

  • Bulygina ON, Razuvaev VN, Korshunova NN (2009) Changes in snow cover over Northern Eurasia in the last few decades. Environ Res Lett 4:045026. doi:10.1088/1748-9326/4/4/045026

  • Bulygina ON, Groisman PY, Razuvaev VN, Radionov VF (2010) Snow cover basal ice layer changes over Northern Eurasia since 1966. Environ Res Lett 5:015 004. doi:10.1088/1748-9326/5/1/015004

    Article  Google Scholar 

  • Callaghan TV, Bergholm F, Christensen TR, Jonasson C,Kokfelt U, Johansson M (2010) A new climate era in the sub-arctic: accelerating climate changes and multiple impacts. Geophys Res Lett 37:L14705. doi:10.1029/2009GL042064

    Article  Google Scholar 

  • Cohen JL, Furtado JC, Barlow MA, Alexeev VA, Cherry JE (2012) Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ Res Lett 7(1):014–007. doi:10.1088/1748-9326/7/1/014007

    Article  Google Scholar 

  • Derksen C, Brown R (2012a) Arctic terrestrial snow in “state of the climate in 2011”. Bull Am Meteorol Soc 93:S148–S149

    Google Scholar 

  • Derksen C, Brown R (2012b) Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections. Geophys Res Lett 39:L19504. doi:10.1029/2012GL053387

    Article  Google Scholar 

  • Derksen C, Brown R, MacKay M (2007) Mackenzie basin snow cover: Variability and trends from conventional data, satellite remote sensing, and Canadian regional climate model simulations. In: Woo M-K (ed) Cold region atmospheric and hydrologic studies: the Mackenzie GEWEX experience. Springer, Berlin pp 213–240

  • Déry SJ, Brown RD (2007) Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback. Geophys Res Lett 34:L22504. doi:10.1029/2007GL031474

    Article  Google Scholar 

  • Deser C, Phillips A, Bourdette V, Teng H (2012) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38:527–546. doi:10.1007/s00382-010-0977-x

    Article  Google Scholar 

  • Frei A, Miller JA, Robinson DA (2003) Improved simulations of snow extent in the second phase of the Atmospheric Model Intercomparison Project (AMIP-2). J Geophys Res 108:4369. doi:10.1029/2002JD003030

    Article  Google Scholar 

  • Frei A, Robinson DA (1998) Evaluation of snow extent and its variability in the atmospheric model intercomparison project. J Geophys Res 103:8859–8872. doi:10.1029/98JD00109

    Article  Google Scholar 

  • Ghatak D, Deser C, Frei A, Gong G, Phillips A, Robinson DA, Stroeve J (2012) Simulated siberian snow cover response to observed arctic sea ice loss, 1979–2008. J Geophys Res 117(D23). doi:10.1029/2012JD018047

  • Gent PR, et al (2011) The community climate system model version 4. J Clim 24:4973–4991. doi:10.1175/2011JCLI4083.1

    Article  Google Scholar 

  • Groisman PY, Karl TR, Knight RW, Stenchikov GL (1994) Changes of snow cover, temperature, and radiative heat balance over the northern hemisphere. J Clim 7:1633–1656. doi:10.1175/1520-0442(1994)007<1633:COSCTA>2.0.CO;2

    Article  Google Scholar 

  • Gutzler DS, Rosen RD (1992) Interannual variability of wintertime snow cover across the northern hemisphere. J Clim 5:1441–1448. doi:10.1175/1520-0442(1992)005<1441:IVOWSC>2.0.CO;2

    Article  Google Scholar 

  • Hurrell JW, Hack JJ, Shea D, Caron JM, Rosinski J (2008) A new sea surface temperature and sea ice boundary dataset for the community atmosphere model. J Clim 21:5145. doi:10.1175/2008JCLI2292.1

    Article  Google Scholar 

  • Jones PD, Lister DH, Osborn TJ, Harpham C, Salmon M, Morice CP (2012) Hemispheric and large-scale land-surface air temperature variations: an extensive revision and an update to 2010. J Geophys Res 117:D05127. doi:10.1029/2011JD017139

    Google Scholar 

  • Kalnay E, et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–472. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

    Article  Google Scholar 

  • Lawrence DM, et al, (2011) Parameterization improvements and functional and structural advances in version 4 of the community land model. J Adv Model Earth Syst 3:45. doi:10.1029/2011MS000045

    Article  Google Scholar 

  • Liu J, Curry JA, Wang H, Song M, Horton RM (2012) Impact of declining Arctic sea ice on winter snowfall. Proc Natl Acad Sci 109(11):4074–4079. doi:10.1073/pnas.1114910109

    Article  Google Scholar 

  • Meehl GA, et al (2007) Chapter 10: global climate projections. In:. climate change 2007: the physical science basis. In: Solomon S et al (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Min S, Zhang X, Zwiers F (2008) Human-induced arctic moistening. Science 320:518–520. doi:10.1126/science.1153468

    Article  Google Scholar 

  • Popova V (2004) Structure of multi-year variations of the snow cover depth in North Eurasia. Russ Meteorol Hydro 8:78–88. doi:10.1002/joc.1489

    Google Scholar 

  • Popova V (2007) Winter snow depth variability over northern Eurasia in relation to recent atmospheric circulation changes. Int J Climatol 27:1721–1733. doi:10.1002/joc.1489

    Article  Google Scholar 

  • Räisänen J (2008) Warmer climate: less or more snow? Clim Dyn 30:307–319. doi:10.1007/s00382-007-0289-y.

    Article  Google Scholar 

  • Shin S-I, Sardeshmukh PD (2011) Critical influence of the pattern of tropical ocean warming on remote climate trends. Clim Dyn 36:1577–1591. doi:10.1007/s00382-009-0732-3

    Article  Google Scholar 

  • Takala M, Luojus K, Pulliainen J, Derksen C, Lemmetyinen L, Kärnä J-P, Koskinen J (2011) Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sens Environ 115:3517–3529. doi:10.1016/j.rse.2011.08.014

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192. doi:10.1029/2000JD900719.

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA, (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1.

    Article  Google Scholar 

  • Trenberth KE, et al (2007) observations: surface and atmospheric climate change. climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, pp 235–336

Download references

Acknowledgments

We acknowledge assistance through legacies of the fourth International Polar Year. We also acknowledge funding from the Natural Sciences and Engineering Research Council of Canada’s Climate Change and Atmospheric Research initiative via the Canadian Sea Ice and Snow Evolution Network. In situ Russian observations provided coutesy of R. Brown and P. Groisman. Computations were performed at the SciNet HPC Consortium funded by: the Canada Foundation for Innovation under the auspices of Compute Canada; the Government of Ontario; Ontario Research Fund-Research Excellence; and the University of Toronto. We thank Clara Deser and an anonymous reviewer for comments which helped to greatly improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Mudryk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mudryk, L.R., Kushner, P.J. & Derksen, C. Interpreting observed northern hemisphere snow trends with large ensembles of climate simulations. Clim Dyn 43, 345–359 (2014). https://doi.org/10.1007/s00382-013-1954-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1954-y

Keywords

Navigation