Skip to main content

Advertisement

Log in

Impacts of bias correction of lateral boundary conditions on regional climate projections in West Africa

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Biases existing in the lateral boundary conditions (LBCs) influence climate simulations in regional climate models (RCMs). Correcting the biases in global climate model (GCM)-produced LBCs before running RCMs was proposed in previous studies as a possible way to reduce the GCM-related model dependence of future climate projections using RCMs. In this study the ICTP Regional Climate Model Version 4 (RegCM4) is used to investigate the impact of LBC bias correction on projected future changes of regional climate in West Africa. To accomplish this, two types of present versus future simulations are conducted using RegCM4: a control type where both the present and future LBCs are derived directly from the GCM output (as is done in most regional climate downscaling studies); an experiment type where the present-day LBCs are from reanalysis data and future LBCs are derived by combining the reanalysis data and the GCM-projected LBC changes. For each type of simulations, three different sets of LBCs are experimented on: 6-hourly synoptic forcing directly from the reanalysis or GCM, 6-hourly data interpolated from monthly climatology (without diurnal cycle), and 6-hourly data interpolated from the month-specific climatology of diurnal cycles. It is found that the simulations using different LBCs produce similar present-day summer rainfall patterns, but the predicted future changes differ significantly depending on how the LBC bias correction is treated. Specifically, both the bias correction applied at the synoptic scale and the bias correction applied to the monthly interpolated LBCs without diurnal cycle produce a spurious drying signal caused by physical inconsistency in the corrected future LBCs. Interpolated monthly LBCs with diurnal cycle alleviate the problem to a large extent. These results suggest that using bias-corrected LBCs to drive regional climate models may not guarantee reliable future projections although reasonable present climate can be simulated. Physical inconsistencies may be contained in the bias-corrected LBCs, increasing the uncertainties of RCM-produced future projections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Afiesimama EA, Pal JS, Abiodun BJ, Gutowski WJ, Adedoyin A (2006) Simulation of west african monsoon using the RegCM3. Part I: Model validation and interannual variability. Theor Appl Climatol 86(1):23–37. doi:10.1007/s00704-005-0202-8

    Google Scholar 

  • Alo C, Wang G (2010) Role of dynamic vegetation in regional climate predictions over western Africa. Clim Dyn 35(5):907–922. doi:10.1007/s00382-010-0744-z

    Article  Google Scholar 

  • Biasutti M, Held IM, Sobel AH, Giannini A (2008) SST forcings and Sahel rainfall variability in simulations of the twentieth and twenty-first centuries. J Clim 21(14):3471–3486. doi:10.1175/2007jcli1896.1

    Article  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A et al (2007) Regional climate projections. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Cook KH, Vizy EK (2006) Coupled model simulations of the West African monsoon system: twentieth- and twenty-first-century simulations. J Clim 19(15):3681–3703. doi:10.1175/jcli3814.1

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Déqué M, Rowell D, Lüthi D et al (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Change 81:53–70

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kenedy PJ (1993) Biosphere-atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model. NCAR/TN-387 + STR, 72 p

  • Druyan LM (2011) Studies of 21st-century precipitation trends over West Africa. Int J Climatol 31(10):1415–1424. doi:10.1002/joc.2180

    Article  Google Scholar 

  • Druyan L, Feng J, Cook K et al (2010) The WAMME regional model intercomparison study. Clim Dyn 35(1):175–192. doi:10.1007/s00382-009-0676-7

    Article  Google Scholar 

  • Emanuel KA (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48(21):2313–2329

    Article  Google Scholar 

  • Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58(3):175

    Google Scholar 

  • Giorgi F, Coppola E, Solmon F et al (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29. doi:10.3354/cr01018

    Article  Google Scholar 

  • Grell GA, Dudhia J, Stauffer DR (1994) Description of the fifth generation Penn State/NCAR mesoscale model (MM5), 121 pp

  • Gu G, Adler RF (2004) Seasonal evolution and variability associated with the West African monsoon system. J Clim 17(17):3364–3377

    Article  Google Scholar 

  • Haarsma RJ, Selten FM, Weber SL, Kliphuis M (2005) Sahel rainfall variability and response to greenhouse warming. Geophys Res Lett 32(17):L17702. doi:10.1029/2005gl023232

    Article  Google Scholar 

  • Hagos SM, Cook KH (2007) Dynamics of the West African monsoon jump. J Clim 20(21):5264–5284

    Article  Google Scholar 

  • Held IM, Delworth TL, Lu J, Findell KL, Knutson TR (2005) Simulation of Sahel drought in the 20th and 21st centuries. PNAS 102(50):17891–17896. doi:10.1073/pnas.0509057102

    Article  Google Scholar 

  • Hoerling M, Hurrell J, Eischeid J, Phillips A (2006) Detection and attribution of twentieth-century northern and southern African rainfall change. J Clim 19(16):3989–4008. doi:10.1175/jcli3842.1

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Morrissey MM et al (2001) Global precipitation at one-degree daily resolution from multisatellite observations. J Hydrometeorol 2(1):36–50. doi:10.1175/1525-7541(2001)002<0036:gpaodd>2.0.co;2

    Article  Google Scholar 

  • Hulme M, Doherty R, Ngara T, New M, Lister D (2001) African climate change: 1900–2100. Clim Res 17(2):145–168

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Johns T, Gregory J, Ingram W et al (2003) Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios. Clim Dyn 20(6):583–612

    Google Scholar 

  • Jung G, Kunstmann H (2007) High-resolution regional climate modeling for the Volta region of West Africa. J Geophys Res 112(D23):D23108

    Article  Google Scholar 

  • Kamga AF, Jenkins GS, Gaye AT, Garba A, Sarr A, Adedoyin A (2005) Evaluating the National Center for Atmospheric Research climate system model over West Africa: present-day and the 21st century A1 scenario. J Geophys Res 110(D3):D03106

    Google Scholar 

  • Koster RD, Dirmeyer PA, Guo Z et al (2004) Regions of strong coupling between soil moisture and precipitation. Science 305(5687):1138–1140

    Article  Google Scholar 

  • Le Barbé L, Lebel T, Tapsoba D (2002) Rainfall variability in West Africa during the years 1950–90. J Clim 15(2):187–202

    Article  Google Scholar 

  • Lebel T, Ali A (2009) Recent trends in the Central and Western Sahel rainfall regime (1990–2007). J Hydrol 375(1–2):52–64

    Article  Google Scholar 

  • Legates DR, Willmott CJ (1990a) Mean seasonal and spatial variability in gauge - corrected, global precipitation. Int J Climatol 10(2):111–127

    Article  Google Scholar 

  • Legates DR, Willmott CJ (1990b) Mean seasonal and spatial variability in global surface air temperature. Theoret Appl Climatol 41(1):11–21

    Article  Google Scholar 

  • Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. PNAS 105(6):1786

    Article  Google Scholar 

  • Liang X-Z, Kunkel KE, Meehl GA, Jones RG, Wang JXL (2008) Regional climate models downscaling analysis of general circulation models present climate biases propagation into future change projections. Geophys Res Lett 35(8):L08709. doi:10.1029/2007gl032849

    Article  Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319(5863):607–610. doi:10.1126/science.1152339

    Article  Google Scholar 

  • Mariotti L, Coppola E, Sylla MB, Giorgi F, Piani C (2011) Regional climate model simulation of projected 21st century climate change over an all-Africa domain: comparison analysis of nested and driving model results. J Geophys Res 116(D15):D15111

    Article  Google Scholar 

  • Maynard KM, Royer JFR, Chauvin FC (2002) Impact of greenhouse warming on the West African summer monsoon. Clim Dyn 19(5):499–514. doi:10.1007/s00382-002-0242-z

    Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25(6):693–712

    Article  Google Scholar 

  • Moss RH, Babiker M, Brinkman S et al (2008) Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. Intergovernmental Panel on Climate Change, Geneva, p 132

  • Moufouma-Okia W, Rowell D (2010) Impact of soil moisture initialisation and lateral boundary conditions on regional climate model simulations of the West African Monsoon. Clim Dyn 35(1):213–229. doi:10.1007/s00382-009-0638-0

    Article  Google Scholar 

  • Nicholson SE, Some B, Kone B (2000) An analysis of recent rainfall conditions in West Africa, including the rainy seasons of the 1997 El Niño and the 1998 La Niña years. J Clim 13(14):2628–2640

    Article  Google Scholar 

  • Nikulin G, Jones C, Samuelsson P et al (2012) Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J Clim 25:6057–6078

    Article  Google Scholar 

  • Oleson KW, Niu GY, Yang ZL et al (2008) Improvements to the Community Land Model and their impact on the hydrological cycle. J Geophys Res 113(G1):G01021. doi:10.1029/2007jg000563

    Google Scholar 

  • Paeth H, Born K, Girmes R, Podzun R, Jacob D (2009) Regional climate change in tropical and northern Africa due to greenhouse forcing and land use changes. J Clim 22(1):114–132

    Article  Google Scholar 

  • Paeth H, Hall NMJ, Gaertner MA et al (2011) Progress in regional downscaling of West African precipitation. Atmos Sci Lett 12(1):75–82

    Article  Google Scholar 

  • Pal JS, Giorgi F, Bi X et al (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88(9):1395–1409. doi:10.1175/bams-88-9-1395

    Article  Google Scholar 

  • Patricola C, Cook K (2010) Northern African climate at the end of the twenty-first century: an integrated application of regional and global climate models. Clim Dyn 35(1):193–212. doi:10.1007/s00382-009-0623-7

    Article  Google Scholar 

  • Redelsperger JL, Thorncroft C, Diedhiou A, Lebel T, Parker D, Polcher J (2006) African Monsoon Multidisciplinary Analysis (AMMA): an international research project and field campaign. Bull Am Meteorol Soc 87(12):1739–1746

    Article  Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15(13):1609–1625

    Article  Google Scholar 

  • Steiner A, Pal J, Rauscher S et al (2009) Land surface coupling in regional climate simulations of the West African monsoon. Clim Dyn 33(6):869–892. doi:10.1007/s00382-009-0543-6

    Article  Google Scholar 

  • Sultan B, Janicot S (2003) The West African monsoon dynamics. Part II: the “preonset” and “onset” of the summer monsoon. J Clim 16(21):3407–3427

    Article  Google Scholar 

  • Sultan B, Janicot S, Diedhiou A (2003) The West African monsoon dynamics. Part I: documentation of intraseasonal variability. J Clim 16(21):3389–3406

    Article  Google Scholar 

  • Sultan B, Baron C, Dingkuhn M, Sarr B, Janicot S (2005) Agricultural impacts of large-scale variability of the West African monsoon. Agric For Meteorol 128(1–2):93–110. doi:10.1016/j.agrformet.2004.08.005

    Article  Google Scholar 

  • Sylla MB, Dell’Aquila A, Ruti PM, Giorgi F (2010) Simulation of the intraseasonal and the interannual variability of rainfall over West Africa with RegCM3 during the monsoon period. Int J Climatol 30(12):1865–1883. doi:10.1002/joc.2029

    Google Scholar 

  • van der Linden P, Mitchell JFB (eds) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3 PB, UK

  • Vigaud N, Roucou P, Fontaine B, Sijikumar S, Tyteca S (2011) WRF/ARPEGE-CLIMAT simulated climate trends over West Africa. Clim Dyn 36(5):925–944

    Article  Google Scholar 

Download references

Acknowledgments

We thank ECMWF for providing the Interim reanalysis data and NOAA for providing the OISST and NCEP reanalysis data. We thank University of Delaware for the observed precipitation and near-surface air temperature. We also thank Systems Laboratory (CISL) at the National Center for Atmospheric Research (NCAR) providing the CESM output and PCMDI for providing the GFDL-ESM2M output. Funding support for this research is provided by the NSF Climate and Large-Scale Dynamics Program (AGS 1049017 & AGS 1063986). Computing resources were provided by the University of Connecticut BECAT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiling Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, M., Wang, G. Impacts of bias correction of lateral boundary conditions on regional climate projections in West Africa. Clim Dyn 42, 2521–2538 (2014). https://doi.org/10.1007/s00382-013-1853-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1853-2

Keywords

Navigation