Skip to main content

Advertisement

Log in

Understanding Madden-Julian-Induced sea surface temperature variations in the North Western Australian Basin

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The strongest large-scale intraseasonal (30–110 day) sea surface temperature (SST) variations in austral summer in the tropics are found in the eastern Indian Ocean between Australia and Indonesia (North-Western Australian Basin, or NWAB). TMI and Argo observations indicate that the temperature signal (std. ~0.4 °C) is most prominent within the top 20 m. This temperature signal appears as a standing oscillation with a 40–50 day timescale within the NWAB, associated with ~40 Wm−2 net heat fluxes (primarily shortwave and latent) and ~0.02 Nm−2 wind stress perturbations. This signal is largely related to the Madden-Julian Oscillation. A slab ocean model with climatological observed mixed-layer depth and an ocean general circulation model both accurately reproduce the observed intraseasonal SST oscillations in the NWAB. Both indicate that most of the intraseasonal SST variations in the NWAB in austral winter are related to surface heat flux forcing, and that intraseasonal SST variations are largest in austral summer because the mixed-layer is shallow (~20 m) and thus more responsive during that season. The general circulation model indicates that entrainment cooling plays little role in intraseasonal SST variations. The larger intraseasonal SST variations in the NWAB as compared to the widely-studied thermocline-ridge of the Indian Ocean region is explained by the larger convective and air-sea heat flux perturbations in the NWAB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barnier B et al (2006) Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy permitting resolution. Ocean Dyn 56:543–567. doi:10.1007/s10236-006-0082-1

    Article  Google Scholar 

  • Bellenger H, Duvel JP (2007) Intraseasonal convective perturbations related to the seasonal March of the Indo-Pacific monsoons. J Clim 20:2853–2863

    Article  Google Scholar 

  • Bellenger H, Duvel JP (2009) An analysis of tropical ocean diurnal warm layers. J Clim 22:3629–3646

    Article  Google Scholar 

  • Bentamy A, Katsaros KB, Alberto M, Drennan WM, Forde EB, Roquet H (2003) Satellite estimates of wind speed and latent heat flux over the global oceans. J Clim 16:637–656

    Article  Google Scholar 

  • Bernie D, Woolnough S, Slingo J, Guilyardi E (2005) Modeling diurnal and intraseasonal variability of the ocean mixed layer. J Clim 18(8):1190–1202

    Article  Google Scholar 

  • Bessafi M, Wheeler MC (2006) Modulation of South Indian Ocean tropical cyclones by the Madden-Julian Oscillation and convectively coupled equatorial waves. Mon Wea Rev 134:638–656

    Article  Google Scholar 

  • Bourlès B, Lumpkin R, McPhaden MJ, Hernandez F, Nobre P, Campos E, Yu L, Planton S, Busalacchi AJ, Moura AD, Servaom J, Trotte J (2008) The PIRATA program: history, accomplishments and future directions. Bull Am Meteorol Soc 89:1111–1125

    Article  Google Scholar 

  • Brodeau L, Barnier B, Treguier AM, Penduff T, Gulev S (2010) An ERA40-based atmospheric forcing for global ocean circulation models. Ocean Model 31:88–104. doi:10.1016/j.ocemod.2009.10.005

    Article  Google Scholar 

  • Cassou C (2008) Intraseasonal interaction between the Madden-Julian Oscillation and the North Atlantic Oscillation. Nature 455:523–527

    Article  Google Scholar 

  • Chelton DB, Schlax MG, Samuelson RM (2011) Global observation of nonlinear mesoscale eddies. Prog Oceanogr 91:167–216. doi:10.1016/j.pocean.2011.01.002

    Article  Google Scholar 

  • Cravatte S, Picaut J, Eldin G (2003) Second and first baroclinic Kelvin modes in the equatorial Pacific at intraseasonal timescales. J Geophys Res 108(C8):3266. doi:10.1029/2002JC001511

    Google Scholar 

  • De Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12003. doi:10.1029/2004JC002378

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Drushka K, Sprintall J, Gill ST (2012) In situ observations of Madden-Julian Oscillation mixed layer dynamics in the Indian and Western Pacific Oceans. J Clim 25:2306–2328

    Article  Google Scholar 

  • Duvel JP (2012) New topics and advances, oceans and air-sea interaction. In: Lau WKM, Waliser DE (eds) Intraseasonal variability in the atmosphere-ocean climate system, 2nd edn. Springer, New York, pp 513–530

    Google Scholar 

  • Duvel JP, Vialard J (2007) Indo-Pacific Sea surface temperature perturbations associated with intraseasonal oscillations of the tropical convection. J Clim 20:3056–3082

    Article  Google Scholar 

  • Duvel JP, Roca R, Vialard J (2004) Ocean mixed layer temperature variations induced by intraseasonal convective perturbations over the Indian Ocean. J Atmos Sci 61:1004–1023

    Article  Google Scholar 

  • Emanuel KA (2003) Tropical cyclones. Annu Rev Earth Planet Sci 31:75–104

    Article  Google Scholar 

  • Fairall CW, Bradley EF, Hare JE, Grachev AA, Edson JB (2003) Bulk parameterization on air-sea fluxes: updates and verification for the COARE algorithm. J Clim 16:571–591

    Article  Google Scholar 

  • Feng M, Wijffels S (2002) Intraseasonal variability in the south equatorial current of the East Indian Ocean. J Phys Ocean 32:265–277

    Article  Google Scholar 

  • Foltz GR, Vialard J, Praveen Kumar B, McPhaden MJ (2010) Seasonal mixed layer heat balance of the southwestern tropical Indian Ocean. J Clim 23:947–965

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Quart J Roy Meteor Soc 106:447–462

    Google Scholar 

  • Goswami BN (2005) South Asian Monsoon. In: Lau WKM, Waliser DE (eds) Intraseasonal variability in the atmosphere-ocean climate system. Praxis Springer, Berlin, pp 19–55

    Chapter  Google Scholar 

  • Han W, Yuan D, Liu WT, Halkides DJ (2007) Intraseasonal variability of Indian Ocean sea surface temperature during boreal winter: Madden-Julian Oscillation versus submonthly forcing and processes. J Geophys Res 112:C04001. doi:10.1029/2006JC003791

    Article  Google Scholar 

  • Harrison DE, Vecchi GA (2001) January 1999 Indian Ocean cooling event. Geophys Res Lett 28:3717–3720

    Article  Google Scholar 

  • Hendon HH, Glick J (1997) Intraseasonal air-sea interaction in the tropical Indian and Pacific Oceans. J Clim 10:647–662

    Article  Google Scholar 

  • Hendon HH, Liebmann B, Glick JD (1998) Oceanic Kelvin waves and the Madden-Julian oscillation. J Atmos Sci 55:88–101

    Article  Google Scholar 

  • Hermes JC, Reason CJC (2008) Annual cycle of the South Indian Ocean (Seychelles-Chagos) thermocline ridge in a regional ocean model. J Geophys Res 113:C04035. doi:10.1029/2007JC004363

    Article  Google Scholar 

  • Inness PM, Slingo JM (2003) Simulation of the Madden-Julian Oscillation in a coupled general circulation model. Part I: comparison with observations and an atmosphere-only GCM. J Clim 16:345–364

    Article  Google Scholar 

  • Jayakumar A, Vialard J, Lengaigne M, Gnanseelan C, McCreary JP, Praveen Kumar B (2011) Processes controlling the surface temperature signature of the Madden-Julian Oscillation in the thermocline ridge of the Indian Ocean. Clim Dyn 37:2217–2234

    Article  Google Scholar 

  • Jerlov NG (1968) Optical oceanography. Elsevier, Amsterdam, p 194

    Google Scholar 

  • Keerthi MG, Lengaigne M, Vialard J, de Boyer Montégut C, Muraleedharan PM (2012) Interannual variability of the Tropical Indian Ocean mixed layer depth. Clim Dyn. doi:10.1007/s00382-012-1295-2

    Google Scholar 

  • Kessler WS, McPhaden MJ, Weickmann KM (1995) Forcing of intraseasonal Kelvin waves in the equatorial Pacific. J Geophys Res 100(6):10613–10631

    Article  Google Scholar 

  • Krishnamurti TN, Oosterhof DK, Mehta AV (1988) Air-sea interaction on the time scale of 30 to 50 days. J Atmos Sci 45:1304–1322

    Article  Google Scholar 

  • Large WG, Yeager SG (2004) Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies NCAR/TN-460 + STR, 111

  • Lengaigne M, Haussman U, Madec G, Menkes C, Vialard J (2012) Mechanisms controlling warm water volume interannual variations in the equatorial Pacific: diabatic versus adiabatic processes. Clim Dyn 38:1031–1046

    Article  Google Scholar 

  • Leroy A, Wheeler MC (2008) Statistical prediction of weekly tropical cyclone activity in the southern hemisphere. Mon Wea Rev 136:3637–3654

    Article  Google Scholar 

  • Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77:1275–1277

    Google Scholar 

  • Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World ocean atlas 2009, Volume 1: temperaturein: Levitus S (ed) NOAA Atlas NESDIS 68, US. Government Printing Office, Washington, DC, p 184

  • Madden R, Julian P (1972) Description of global-scale circulation cells in the tropics with a 40–50 day period. J Atmos Sci 29(6):1109–1123

    Article  Google Scholar 

  • Madec G (2008) NEMO, the ocean engine. Tech. Rep, Notes de l’IPSL (27), ISSN 1288–1619, Université P. et M. Curie, B102 T15-E5, 4 Place Jussieu, Paris Cedex 5, p 193

  • Maloney E, Sobel A (2004) Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J Clim 17(22):3717–3720

    Article  Google Scholar 

  • McCreary JP, Kundu PK, Molinari RL (1993) A numerical investigation of dynamics, thermodynamics and mixed layer processes in the Indian Ocean. Prog Oceanogr 31:181–244

    Article  Google Scholar 

  • Mcphaden MJ, Busalacchi AJ, Cheney R, Donguy JR, Gage KS, Halpern D, Ji M, Julian P, Meyers G, Mitchum GT, Niiler PP, Picaut J, Reynolds RW, Smith N, Takeuchi K (1998) The tropical ocean-global atmosphere (TOGA) observing system: a decade of progress. J Geophys Res 103(14):169–14240

    Google Scholar 

  • McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in Earth science. Science 314:1740–1745

    Article  Google Scholar 

  • McPhaden MJ, Meyers G, Ando K, Masumoto Y, Murty VSN, Ravichandran M, Syamsudin F, Vialard J, Yu L, Yu W (2009) RAMA: the research moored array for African-Asian-Australian monsoon analysis and prediction. Bull Am Meteorol Soc 90:459–480

    Article  Google Scholar 

  • Nidheesh AG, Lengaigne M, Unnikrishnan AS, Vialard J (2012) Decadal and long-term sea level variability in the tropical Indo-Pacific. Clim Dyn. doi:10.1007/s00382-012-1463-4

    Google Scholar 

  • Nisha KM, Lengaigne VV, Gopalakrishna J, Vialard S, Pous A-C, Peter F, Durand S, Naik (2012) Processe of summer intraseasonal sea surface temperature variability along the coasts of India. Ocean Dyn (in revision)

  • Oliver ECJ, Thompson KR (2010) Madden-Julian Oscillation and sea level: local and remote forcing. J Geophys Res 115:C01003. doi:10.1029/2009JC005337

    Article  Google Scholar 

  • Pohl B, Richard Y, Fauchereau N (2007) Influence of the Madden-Julian oscillation on Southern African summer rainfall. J Clim 20:4227–4242. doi:10.1175/JCLI4231.1

    Article  Google Scholar 

  • Praveen Kumar B, Vialard J, Lengaigne M, Murty VSN, McPhaden MJ (2012a) TropFlux: air-sea fluxes for the global tropical oceans—description and evaluation against observations. Clim Dyn 38:1521–1543

    Article  Google Scholar 

  • Praveen Kumar B, Vialard J, Lengaigne M, Murty VSN, McPhaden MJ, Cronin M, Pinsard F, Gopala Reddy K (2012) TropFlux wind stresses over the tropical oceans: evaluation and comparison with other products. Clim Dyn. doi:10.1007/s00382-012-1455-4

  • Saji NH, Xie S-P, Tam CY (2006) Satellite observations of intense intraseasonal cooling events in the tropical south Indian Ocean. Geophys Res Lett 33:L14704. doi:10.1029/2006GL026525

    Article  Google Scholar 

  • Shinoda T, Hendon HH, Glick J (1998) Intraseasonal variability of surface fluxes and sea surface temperature in the tropical western Pacific and Indian oceans. J Clim 11:1685–1702

    Article  Google Scholar 

  • Treguier AM, Barnier B, De Miranda AP, Molines JM, Grima N, Imbard M, Madec G, Messager C, Reynaud T, Michel S (2001) An eddy-permitting model of the Atlantic circulation: evaluating open boundary conditions. J Geophys Res 106(22):115–22129

    Google Scholar 

  • Uppala SM et al (2005) The ERA-40 reanalysis. Q J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • Vialard J, Delecluse P (1998) A: an OGCM study for the TOGA decade. Part I: role of Salinity in the physics of the western Pacific fresh pool. J Phys Oceanogr 28:1071–1088

    Article  Google Scholar 

  • Vialard J, Foltz G, McPhaden M, Duvel J-P, de Boyer Montégut C (2008) Strong Indian Ocean sea surface temperature signals associated with the Madden-Julian Oscillation in late 2007 and early 2008. Geophys Res Lett 35:L19608. doi:10.1029/2008GL035238

    Article  Google Scholar 

  • Vialard J, Shenoi SSC, McCreary JP, Shankar D, Durand F, Fernando V, Shetye SR (2009a) Intraseasonal response of Northern Indian Ocean coastal waveguide to the Madden-Julian Oscillation. Geophys Res Lett 36:L14605. doi:10.1029/2008GL037010

    Article  Google Scholar 

  • Vialard J, Duvel J-P, McPhaden M, Bouruet-Aubertot P, Ward B, Key E, Bourras D, Weller R, Minnett P, Weill A, Cassou C, Eymard L, Fristedt T, Basdevant C, Dandoneau Y, Duteil O, Izumo T, de Boyer Montégut C, Masson S, Marsac F, Menkes C, Kennan S (2009b) Cirene: air sea interactions in the Seychelles-Chagos thermocline ridge region. Bull Am Met Soc 90:45–61

    Article  Google Scholar 

  • Vialard J, Jayakumar A, Gnanaseelan C, Lengaigne M, Sengupta D (2012) Processes of intraseasonal sea surface temperature variability in the Northern Indian Ocean during boreal summer. Clim Dyn 38:1901–1916

    Article  Google Scholar 

  • Vinayachandran PN, Saji NH (2008) Mechanisms of South Indian Ocean intraseasonal cooling. Geophys Res Lett 35:L23607. doi:10.1029/2008GL035733

    Article  Google Scholar 

  • Vincent EM, Lengaigne M, Madec G, Vialard J, Samson G, Jourdain N, Menkes CE, Jullien S (2012) Processes setting the characteristics of sea surface cooling induced by Tropical Cyclones. J Geophys Res 117:C02020. doi:10.1029/2011JC007396

    Article  Google Scholar 

  • Waliser DE, Lau KM, Kim JH (1999) The influence of coupled SSTs on the Madden-Julian oscillation: a model perturbation experiment. J Atmos Sci 56:333–358

    Article  Google Scholar 

  • Waliser DE, Murtugudde R, Lucas LE (2003) Indo-Pacific Ocean response to atmospheric intraseasonal variability: 1: austral summer and the Madden-Julian Oscillation. J Geophys Res 108(C5):3160. doi:10.1029/2002JC001620

    Article  Google Scholar 

  • Weaver A, Courtier P (2001) Correlation modeling on the sphere using a generalized diffusion equation. Quart J Roy Meteor Soc 127:1815–1846

    Article  Google Scholar 

  • Wentz FJ, Gentemann C, Smith D, Chelton D (2000) Satellite measurements of sea-surface temperature through clouds. Science 288:847–850

    Article  Google Scholar 

  • Wheeler M, Hendon H (2004) An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon Weather Rev 132:1917–1932

    Article  Google Scholar 

  • Woolnough SJ, Vitart F, Balmaseda MA (2007) The role of the ocean in the Madden-Julian Oscillation: sensitivity of an MJO forecast to ocean coupling. Quart J Roy Meteor Soc 133:117–128

    Article  Google Scholar 

  • Xie S-P, Annamalai H, Schott FA, McCreary JP (2002) Structure and mechanisms of south Indian climate variability. J Clim 9:840–858

    Article  Google Scholar 

  • Yokoi T, Tozuka T, Yamagata T (2008) Seasonal variation of the seychelles dome. J Clim 21:3740–3754

    Article  Google Scholar 

  • Yu L, Weller RA (2007) Objectively analyzed air-sea heat Fluxes (OAFlux) for the global oceans. Bull Am Meteorol Soc 88:527–539

    Article  Google Scholar 

  • Zhang C (1996) Atmospheric intraseasonal variability at the surface in the western Pacific Ocean. J Atmos Sci 53:739–758

    Article  Google Scholar 

  • Zhang C (2005) The madden Julian Oscillation. Rev Geophys 43:RG2003. doi:10.1029/2004RG000158

  • Zhang C, Dong M (2004) Seasonality of the Madden-Julian Oscillation. J Clim 17:3169–3180

    Article  Google Scholar 

  • Zhang C, Gottschalck J (2002) SST anomalies of ENSO and the Madden-Julian Oscillation in the Equatorial Pacific. J Clim 15:2429–2445

    Article  Google Scholar 

  • Zhang Y, Rossow WB, Lacis AA, Oinas V, Mishchenko MI (2004) Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative trasfer model and the input data. J Geophys Res 109:D19105. doi:10.1029/2003JD004457

Download references

Acknowledgments

Jérôme Vialard and Matthieu Lengaigne are funded by Institut de Recherche pour le Développement (IRD). Matthieu Lengaigne produced his contribution to this paper while visiting the National Institute of Oceanography (NIO) in Goa, India. Hugo Bellenger and Kyla Drushka were funded by the Agence Nationale pour la Recherche (ANR) METRO project when they worked on this paper. We thank Anne-Charlotte Peter for her assistance in running the ocean general circulation model simulations that were used in this paper. We thank Clément de Boyer Montégut for his inputs on Argo data. We thank Matthew Wheeler for useful comments on our results. We thank Harry Hendon and an anonymous reviewer for their useful comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vialard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vialard, J., Drushka, K., Bellenger, H. et al. Understanding Madden-Julian-Induced sea surface temperature variations in the North Western Australian Basin. Clim Dyn 41, 3203–3218 (2013). https://doi.org/10.1007/s00382-012-1541-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1541-7

Keywords

Navigation