Skip to main content

Advertisement

Log in

Glacial-interglacial water cycle, global monsoon and atmospheric methane changes

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The causes of atmospheric methane (CH4) changes are still a major contention, in particular with regards to the relative contributions of glacial-interglacial cycles, monsoons in both hemispheres and the late Holocene human intervention. Here, we explore the CH4 signals in the Antarctic EPICA Dome C and Vostok ice records using the methods of timeseries analyses and correlate them with insolation and geological records to address these issues. The results parse out three distinct groups of CH4 signals attributable to different drivers. The first group (~80% variance), well tracking the marine δ18O record, is attributable to glacial-interglacial modulation on the global water cycle with the effects shared by wetlands at all latitudes, from monsoonal and non-monsoonal regions in both hemispheres. The second group (~15% variance), centered at the ~10-kyr semi-precession frequency, is linkable with insolation-driven tropical monsoon changes in both hemispheres. The third group (~5% variance), marked by millennial frequencies, is seemingly related with the combined effect of ice-volume and bi-hemispheric insolation changes at the precession bands. These results indicate that bi-hemispheric monsoon changes have been a constant driver of atmospheric CH4. This mechanism also partially explains the Holocene CH4 reversal since ~5 kyr BP besides the human intervention. In the light of these results, we propose that global monsoon can be regarded as a system consisting of two main integrated components, one primarily driven by the oscillations of Inter-Tropical Convergence Zone (ITCZ) in response to the low-latitude summer insolation changes, anti-phase between the two hemispheres (i.e. the ITCZ monsoon component); and another modulated by the glacial-interglacial cycles, mostly synchronous at the global scale (i.e. the glacial-interglacial monsoon component). Although atmospheric CH4 record integrates all wetland processes, including significant non-monsoonal contributions, it is the only and probably the best proxy available to reflect the past changes of global monsoon. However, the utility of CH4 as a proxy of monsoon changes at any specific location is compromised by its bi-hemispheric nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adegbie AT, Schneider RR, Rohl U, Wefer G (2003) Glacial millennial-scale fluctuations in central African precipitation recorded in terrigenous sediment supply and freshwater signals offshore Cameroon. Palaeogeogr Palaeoecol Palaeocl 197:323–333

    Google Scholar 

  • Aselmann I, Crutzen PJ (1989) Global distribution of natural fresh-water wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J Atmos Chem 8:307–358

    Google Scholar 

  • Barker P, Williamson D, Gasse F, Gibert E (2003) Climatic and volcanic forcing revealed in a 50,000-year diatom record from Lake Massoko, Tanzania. Quat Res 60:368–376

    Google Scholar 

  • Bartlett KB, Harriss RC (1993) Review and assessment of methane emissions from wetlands. Chemosphere 26:261–320

    Google Scholar 

  • Bassinot FC, Labeyrie LD, Vincent E, Quidelleur X, Shackleton NJ, Lancelot Y (1994) The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth Planet Sci Lett 126:91–108

    Google Scholar 

  • Becquey S, Gersonde R (2003) A 0.55-Ma paleotemperature record from the Subantarctic zone: implications for Antarctic Circumpolar Current development. Paleoceanography 18:1014. doi:10.1029/2000PA000576

    Google Scholar 

  • Beerling D, Berner RA, Mackenzie FT, Harfoot MB, Pyle JA (2009) Methane and the CH4 related greenhouse effect over the past 400 million years. Am J Sci 309(2):97–113. doi:10.2475/02.2009.01

    Google Scholar 

  • Berger A (1978) Long-term variations of daily insolation and Quaternary climate changes. J Atmos Sci 35:2362–2367

    Google Scholar 

  • Berger A, Loutre MF, Melice JL (2006) Equatorial insolation: from the precession harmonics to eccentricity frequencies. Clim Past 2:131–136

    Google Scholar 

  • Bonnefille R, Chalié F (2000) Pollen-inferred precipitation time-series from equatorial mountains, Africa, the last 40 kyr BP. Global Planet Change 26:25–50

    Google Scholar 

  • Brook EJ (2009) Palaeoclimate atmospheric carbon footprints? Nat Geosci 2:170–172

    Google Scholar 

  • Brook EJ, Harder S, Severinghaus J, Steig EJ, Sucher CM (2000) On the origin and timing of rapid changes in atmospheric methane during the last glacial period. Global Biogeochem Cycle 14:559–572

    Google Scholar 

  • Cao MK, Marshall S, Gregson K (1996) Global carbon exchange and methane emissions from natural wetlands: application of a process-based model. J Geophys Res Atmos 101:14399–14414

    Google Scholar 

  • Cardenas ML, Gosling WD, Sherlock SC, Poole I, Pennington RT, Mothes P (2011) The response of vegetation on the Andean Flank in Western Amazonia to Pleistocene climate change. Science 331(6020):1055–1058. doi:10.1126/science.1197947

    Google Scholar 

  • Chappellaz J, Blunier T, Raynaud D, Barnola JM, Schwander J, Stauffer B (1993) Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 kyr BP. Nature 366:443–445

    Google Scholar 

  • Chappellaz J, Blunier T, Kints S, Dallenbach A, Barnola JM, Schwander J, Raynaud D, Stauffer B (1997a) Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Holocene. J Geophys Res Atmos 102:15987–15997

    Google Scholar 

  • Chappellaz J, Brook E, Blunier T, Malaize B (1997b) CH4 and δ18O of O2 records from Antarctic and Greenland ice: a clue for stratigraphic disturbance in the bottom part of the Greenland Ice Core Project and the Greenland Ice Sheet Project 2 ice cores. J Geophys Res Oceans 102:26547–26557

    Google Scholar 

  • Chen FH, Bloemendal J, Zhang PZ, Liu GX (1999) An 800 ky proxy record of climate from lake sediments of the Zoige Basin, eastern Tibetan Plateau. Palaeogeogra Palaeoecol Palaeocl 151:307–320

    Google Scholar 

  • Clemens S, Prell W, Murray D, Shimmield G, Weedon G (1991) Forcing mechanisms of the Indian-Ocean monsoon. Nature 353:720–725

    Google Scholar 

  • Clemens SC, Murray DW, Prell WL (1996) Nonstationary phase of the Plio-Pleistocene Asian monsoon. Science 274:943–948. doi:10.1126/science.274.5289.943

    Google Scholar 

  • Cosford J, Qing HR, Eglington B, Mattey D, Yuan DX, Zhang ML, Cheng H (2008) East Asian monsoon variability since the Mid-Holocene recorded in a high-resolution, absolute-dated aragonite speleothem from eastern China. Earth Planet Sci Lett 275:296–307

    Google Scholar 

  • Cox PM, Harrie PP, Huntingford C, Betts RA, Collins M, Jones CD, Jupp TE, Marengo JA, Nobre CA (2008) Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature 453:212–215

    Google Scholar 

  • Crutzen PJ, Aselmann I, Seil W (1986) Methane production by domestic animals, wild ruminants, other herbivorous fauna, and human. Tellus B 38:271–284

    Google Scholar 

  • Cruz FW, Burns SJ, Karmann I, Sharp WD, Vuille M, Cardoso AO, Ferrari JA, Dias PLS, Viana O (2005) Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434:63–66

    Google Scholar 

  • de Garidel-Thoron T, Rosenthal Y, Bassinot F, Beaufort L (2005) Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years. Nature 433:294–298

    Google Scholar 

  • de Vernal A, Hillaire-Marcel C (2008) Natural variability of Greenland climate, vegetation, and ice volume during the past million years. Science 320:1622–1625

    Google Scholar 

  • deMenocal PB (1995) Plio-Pleistocene African climate. Science 270:53–59

    Google Scholar 

  • Ding ZT, Liu TS, Rutter NW, Yu ZW, Guo ZT, Zhu RX (1995) Ice-volume forcing of East Asian winter monsoon variations in the past 800,000 years. Quat Res 44(2):149–159

    Google Scholar 

  • Ding YH, Li CY, Liu YJ (2004) Overview of the South China Sea monsoon experiment. Adv Atmos Sci 21(3):343–360. doi:10.1007/bf02915563

    Google Scholar 

  • Fawcett PJ, Werne JP, Anderson RS, Heikoop JM, Brown ET, Berke MA, Smith SJ, Goff F, Donohoo-Hurley L, Cisneros-Dozal LM, Schouten S, Sinninghe Damste JS, Huang Y, Toney J, Fessenden J, WoldeGabriel G, Atudorei V, Geissman JW, Allen CD (2011) Extended megadroughts in the southwestern United States during Pleistocene interglacials. Nature 470(7335):518–521

    Google Scholar 

  • Fischer H, Behrens M, Bock M, Richter U, Schmitt J, Loulergue L, Chappellaz J, Spahni R, Blunier T, Leuenberger M, Stocker TF (2008) Changing boreal methane sources and constant biomass burning during the last termination. Nature 452:864–867

    Google Scholar 

  • Fuller DQ, van Etten J, Manning K, Castillo C, Kingwell-Banham E, Weisskopf A, Qin L, Sato Y-I, Hijmans RJ (2011) The contribution of rice agriculture and livestock pastoralism to prehistoric methane levels: an archaeological assessment. Holocene. doi:10.1177/0959683611398052

    Google Scholar 

  • Gamiz-Fortis SR, Pozo-Vazquez D, Esteban-Parra MJ, Castro-Diez Y (2002) Spectral characteristics and predictability of the NAO assessed through Singular Spectral Analysis. J Geophys Res Atmos 107:4685. doi:10.1029/2001JD001436

    Google Scholar 

  • Gasse F (2000) Hydrological changes in the African tropics since the Last Glacial Maximum. Quat Sci Rev 19:189–211

    Google Scholar 

  • Ghil M, Allen MR, Dettinger MD, Ide K, Kondrashov D, Mann ME, Robertson AW, Saunders A, Tian Y, Varadi F, Yiou P (2002) Advanced spectral methods for climatic timeseries. Rev Geophys 40:1003. doi:10.1029/2000RG000092

    Google Scholar 

  • Griffiths ML, Drysdale RN, Gagan MK, Zhao JX, Ayliffe LK, Hellstrom JC, Hantoro WS, Frisia S, Feng YX, Cartwright I, Pierre ES, Fischer MJ, Suwargadi BW (2009) Increasing Australian-Indonesian monsoon rainfall linked to early Holocene sea-level rise. Nat Geosci 2:636–639

    Google Scholar 

  • Guo ZT, Liu TS, Fédoroff N, Wei LY, Ding ZL, Wu NQ, Lu HY, Jiang WY, An ZS (1998) Climate extremes in loess of China coupled with the strength of deep-water formation in the North Atlantic. Glob Planet Change 18(3–4):113–128

    Google Scholar 

  • Guo ZT, Biscaye P, Wei LY, Chen XH, Peng SZ, Liu TS (2000) Summer monsoon varatiations over the last 1.2 Ma from the weathering of loess-soil sequences in China. Geophys Res Lett 27:1751–1754

    Google Scholar 

  • Guo ZT, Peng SZ, Hao QZ, Biscaye PE, An ZS, Liu TS (2004) Late Miocene-Pliocene development of Asian aridification as recorded in the Red-Earth Formation in northern China. Glob Planet Change 41(3–4):135–145. doi:10.1016/j.gloplacha.2004.01.002

    Google Scholar 

  • Guo ZT, Berger A, Yin QZ, Qin L (2009) Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records. Clim Past 5:21–31

    Google Scholar 

  • Halley E (1986) An historical account of the trade winds and monsoons observable in the seas between and near the tropics with an attempt to assign the physical cause of the said wind. Phil Trans R Soc Lond 16:153–168

    Google Scholar 

  • Haug GH, Hughen KA, Sigman DM, Peterson LC, Rohl U (2001) Southward migration of the intertropical convergence zone through the Holocene. Science 293:1304–1308

    Google Scholar 

  • Horikawa K, Murayama M, Minagawa M, Kato Y, Sagawa T (2010) Latitudinal and downcore (0–750 ka) changes in n-alkane chain lengths in the eastern equatorial Pacific. Quat Res 73(3):573–582. doi:10.1016/j.yqres.2010.01.001

    Google Scholar 

  • Hovan SA, Rea DK, Pisias NG, Shackleton NJ (1989) A direct link between the China loess and marine δ18O records—Aeolian flux to the North Pacific. Nature 340:296–298

    Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP Version 2.1. Geophys Res Lett 36(17):L17808. doi:10.1029/2009gl040000

    Google Scholar 

  • Hutchinson GE (1954) The biochemistry of the terrestrial atmosphere. In: Kuiper GP (ed) The solar system. Chcago Press, Chicago, pp 371–433

    Google Scholar 

  • Iriondo M (2000) Patagonian dust in Antarctica. Quat Int 68:83–86

    Google Scholar 

  • Jiang DB, Lang XM (2010) Last Glacial Maximum East Asian monsoon: results of PMIP simulations. J Clim 23:5030–5038

    Google Scholar 

  • Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317:793–796

    Google Scholar 

  • Kaplan JO (2002) Wetlands at the Last Glacial Maximum: distribution and methane emissions. Geophys Res Lett 29(6):1079. doi:10.1029/2001gl013366

    Google Scholar 

  • Kaplan JO, Folberth G, Hauglustaine DA (2006) Role of methane and biogenic volatile organic compound sources in late glacial and Holocene fluctuations of atmospheric methane concentrations. Glob Biogeochem Cycles 20:GB2016. doi:10.1029/2005GB002590

    Google Scholar 

  • Karl DM, Beversdorf L, Bjorkman KM, Church MJ, Martinez A, DeLong EF (2008) Aerobic production of methane in the sea. Nat Geosci 1:473–478

    Google Scholar 

  • Kelly MJ, Edwards RL, Cheng H, Yuan D, Cai Y, Zhang M, Lin Y, An Z (2006) High resolution characterization of the Asian Monsoon between 146,000 and 99,000 years B.P. from Dongge Cave, China and global correlation of events surrounding Termination II. Palaeogeogra Palaeoecol Palaeocl 236:20–38

    Google Scholar 

  • Keppler F, Hamilton JTG, Brass M, Rockmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191

    Google Scholar 

  • King AL, Howard WR (2000) Middle Pleistocene sea-surface temperature change in the southwest Pacific Ocean on orbital and suborbital time scales. Geology 28:659–662

    Google Scholar 

  • Kukla G (1987) Loess stratigraphy in central China. Quat Sci Rev 6:191–219

    Google Scholar 

  • Kutzbach JE (1981) Monsoon climate of the early Holocene—climate experiment with the earths orbital parameters for 9,000 years ago. Science 214:59–61

    Google Scholar 

  • Kutzbach JE, Liu Z (1997) Response of the African monsoon to orbital forcing and ocean feedbacks in the middle Holocene. Science 278:440–443

    Google Scholar 

  • Lambert F, Delmonte B, Petit JR, Bigler M, Kaufmann PR, Hutterli MA, Stocker TF, Ruth U, Steffensen JP, Maggi V (2008) Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 452:616–619

    Google Scholar 

  • Landais A, Dreyfus G, Capron E, Masson-Delmotte V, Sanchez-Goni MF, Desprat S, Hoffmann G, Jouzel J, Leuenberger M, Johnsen S (2010) What drives the millennial and orbital variations of δ18O-atm? Quat Sci Rev 29:235–246

    Google Scholar 

  • Lehner B, Doll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296:1–22

    Google Scholar 

  • Lestari RK, Iwasaki T (2006) A GCM study on the roles of the seasonal marches of the SST and land-sea thermal contrast in the onset of the Asian summer monsoon. J Meteorol Soc Jpn 84:69–83

    Google Scholar 

  • Li Q, Wang P, Zhao Q, Tian J, Cheng X, Jian Z, Zhong G, Chen M (2008) Paleoceanography of the mid-Pleistocene South China Sea. Quat Sci Rev 27:1217–1233

    Google Scholar 

  • Lisiecki LE, Raymo ME (2005) A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:PA1003. doi:10.1029/2004PA001071

    Google Scholar 

  • Liu TS, Guo ZT, Liu JQ, Han JM, Ding ZL, Gu ZY, Wu NQ (1995) Variations of eastern Asian monsoon over the last 140,000 years. Bull Soc Geol France 166:221–229

    Google Scholar 

  • Loulergue L, Schilt A, Spahni R, Masson-Delmotte V, Blunier T, Lemieux B, Barnola JM, Raynaud D, Stocker TF, Chappellaz J (2008) Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453:383–386

    Google Scholar 

  • Luthi D, Le Floch M, Bereiter B, Blunier T, Barnola JM, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453:379–382

    Google Scholar 

  • Magee JW, Miller GH, Spooner NA, Questiaux D (2004) Continuous 150 ky monsoon record from Lake Eyre, Australia: insolation-forcing implications and unexpected Holocene failure. Geology 32:885–888

    Google Scholar 

  • Markgraf V, Baumgartner TR, Bradbury JP, Diaz HF, Dunbar RB, Luckman BH, Seltzer GO, Swetnam TW, Villalba R (2000) Paleoclimate reconstruction along the Pole-Equator-Pole transect of the Americas (PEP 1). Quat Sci Rev 19:125–140

    Google Scholar 

  • Marković SB, Hambach U, Catto N, Jovanović M, Buggle B, Machalett B, Zöller L, Glaser B, Frechen M (2009) The Middle and Late Pleistocene loess sequences at Batajnica, Vojvodina, Serbia. Quat Int 198:255–266

    Google Scholar 

  • Martínez-Garcia A, Rosell-Melé A, Geibert W, Gersonde R, MasquéP, Gaspari V, Barbante C (2009) Links between iron supply, marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma. Paleoceanography 24(1):PA1207. doi:10.1029/2008pa001657

    Google Scholar 

  • Matthews E, Fung I (1987) Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Glob Biogeochem Cycles 1:61–86

    Google Scholar 

  • McClymont EL, Rosell-Mele A, Giraudeau J, Pierre C, Lloyd JM (2005) Alkenone and coccolith records of the mid-pleistocene in the south-east Atlantic: implications for the u-37(k) index and South African climate. Quat Sci Rev 24:1559–1572

    Google Scholar 

  • McIntyre A, Molfino B (1996) Forcing of Atlantic equatorial and subpolar millennial cycles by precession. Science 274:1867–1870

    Google Scholar 

  • McManus JF, Oppo DW, Cullen JL (1999) A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science 283(5404):971–975

    Google Scholar 

  • Milankovitch M (1948) Ausbau Und Gegenwartiger Stand Der Astronomischen Theorie Der Erdgeschichtlichen Klimate. Experientia 4(11):413–418

    Google Scholar 

  • Min S-K, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more-intense precipitation extremes. Nature 470(7334):378–381

    Google Scholar 

  • Mohtadi M, Lückge A, Steinke S, Groeneveld J, Hebbeln D, Westphal N (2010) Late Pleistocene surface and thermocline conditions of the eastern tropical Indian Ocean. Quat Sci Rev 29(7–8):887–896. doi:10.1016/j.quascirev.2009.12.006

    Google Scholar 

  • Parrenin F, Barnola JM, Beer J, Blunier T, Castellano E, Chappellaz J, Dreyfus G, Fischer H, Fujita S, Jouzel J, Kawamura K, Lemieux-Dudon B, Loulergue L, Masson-Delmotte V, Narcisi B, Petit JR, Raisbeck G, Raynaud D, Ruth U, Schwander J, Severi M, Spahni R, Steffensen JP, Svensson A, Udisti R, Waelbroeck C, Wolff E (2007) The EDC3 chronology for the EPICA Dome C ice core. Clim Past 3:485–497

    Google Scholar 

  • Partridge TC, deMenocal PB, Lorentz SA, Paiker MJ, Vogel JC (1997) Orbital forcing of climate over South Africa: A 200,000-year rainfall record from the Pretoria Saltpan. Quaternary Sci Rev 16:1125–1133

    Google Scholar 

  • Pausata FSR, Battisti DS, Nisancioglu KH, Bitz CM (2011) Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nat Geosci 4:474–480. doi:10.1038/ngeo1169

    Google Scholar 

  • Penland C, Ghil M, Weikmann K (1991) Adaptive filtering and maximum entropy spectra with application to changes in atmospheric angular momentum. J Geophys Res 96:22659–22671

    Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Bender M, Chappellaz J, Davisk M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    Google Scholar 

  • Pisias NG, Clark PU, Brook EJ (2010) Modes of global climate variability during Marine Isotope Stage 3 (60–26 ka). J Clim 23:1581–1588

    Google Scholar 

  • Poore RZ, Pavich MJ, Grissino-Mayer HD (2005) Record of the North American southwest monsoon from Gulf of Mexico sediment cores. Geology 33:209–212

    Google Scholar 

  • Prokopenko AA, Williams DF, Kuzmin MI, Karabanov EB, Khursevich GK, Peck JA (2002) Muted climate variations in continental Siberia during the mid-Pleistocene epoch. Nature 418:65–68

    Google Scholar 

  • Quay PD, King SL, Stutsman J, Wilbur DO, Steele LP (1991) Carbon isotope composition of CH4: fossil and biomass burning source strengths. Glob Biogeochem Cycles 5:25–47

    Google Scholar 

  • Rossignol-Strick M, Paterne M, Bassinot FC, Emeis KC, De Lange GJ (1998) An unusual mid-Pleistocene monsoon period over Africa and Asia. Nature 392:269–272

    Google Scholar 

  • Ruddiman WF (2003) The anthropogenic greenhouse era began thousands of years ago. Clim Change 61:261–293

    Google Scholar 

  • Ruddiman WF (2007) The early anthropogenic hypothesis: challenges and responses. Rev Geophys 45:RG4001. doi:10.1029/2006RG000207

    Google Scholar 

  • Ruddiman WF, Raymo ME (2003) A methane-based time scale for Vostok ice. Quat Sci Rev 22:141–155

    Google Scholar 

  • Ruddiman WF, Thomson JS (2001) The case for human causes of increased atmospheric CH4. Quat Sci Rev 20:1769–1777

    Google Scholar 

  • Ruddiman WF, Guo ZT, Zhou X, Wu HB, Yu YY (2008) Early rice farming and anomalous methane trends. Quat Sci Rev 27:1291–1295

    Google Scholar 

  • Schmidt GA, Shindell DT, Harder S (2004) A note on the relationship between ice core methane concentrations and insolation. Geophys Res Lett 31:L23206. doi:10.1029/2004GL021083

    Google Scholar 

  • Seltzer G, Rodbell D, Burns S (2000) Isotopic evidence for late Quaternary climatic change in tropical South America. Geology 28:35–38

    Google Scholar 

  • Sepulcre S, Vidal L, Tachikawa K, Rostek F, Bard E (2011) Sea-surface salinity variations in the northern Caribbean Sea across the Mid-Pleistocene Transition. Clim Past 7(1):75–90. doi:10.5194/cp-7-75-2011

    Google Scholar 

  • Singarayer JS, Valdes PJ, Friedlingstein P, Nelson S, Beerling DJ (2011) Late Holocene methane rise caused by orbitally controlled increase in tropical sources. Nature 470:82–85

    Google Scholar 

  • Souma K, Wang YQ (2010) A comparison between the effects of snow albedo and infiltration of melting water of Eurasian snow on East Asian summer monsoon rainfall. J Geophys Res Atmos 115:D02115. doi:10.1029/2009JD012189

    Google Scholar 

  • Spahni R, Chappellaz J, Stocker TF, Loulergue L, Hausammann G, Kawamura K, Fluckiger J, Schwander J, Raynaud D, Masson-Delmotte V, Jouzel J (2005) Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores. Science 310:1317–1321

    Google Scholar 

  • Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84(9):1205–1217. doi:10.1175/BAMS-84-9-1205

    Google Scholar 

  • Vandenberghe J (2000) A global perspective of the European chronostratigraphy for the past 650 ka. Quat Sci Rev 19(17–18):1701–1707

    Google Scholar 

  • Vautard R, Yiou P, Ghil M (1992) Singular-spectrum analysis: a toolkit for short, noisy chaitic signals. Phys D 58:95–126

    Google Scholar 

  • Verschuren D, Damste JSS, Moernaut J, Kristen I, Blaauw M, Fagot M, Haug GH, Members CP (2009) Half-precessional dynamics of monsoon rainfall near the East African Equator. Nature 462:637–641

    Google Scholar 

  • Wadham JL, Tranter M, Tulaczyk S, Sharp M (2008) Subglacial methanogenesis: a potential climatic amplifier? Glob Biogeochem Cycles 22:GB2021. doi:10.1029/2007GB002951

    Google Scholar 

  • Wahlen M (1993) The global methane cycle. Annu Rev Earth Planet Sci 21:407–426

    Google Scholar 

  • Walter BP, Heimann M (2000) A process-based, climate-sensitive model to derive methane emissions from natural wetlands: application to five wetland sites, sensitivity to model parameters, and climate. Glob Biogeochem Cycles 14:745–765

    Google Scholar 

  • Wang B (2006) The Asian monsoon. Springer, Berlin, p 787

    Google Scholar 

  • Wang PX (2009) Global monsoon in a geological perspective. Chin Sci Bull 54:1113–1136

    Google Scholar 

  • Wang B, Ding QH (2008) Global monsoon: dominant mode of annual variation in the tropics. Dyn Atmos Oceans 44:165–183

    Google Scholar 

  • Wang PX, Tian J, Cheng XR, Liu CL, Xu J (2003) Carbon reservoir changes preceded major ice-sheet expansion at the mid-Brunhes event. Geology 31(3):239–242

    Google Scholar 

  • Wang XF, Auler AS, Edwards RL, Cheng H, Cristalli PS, Smart PL, Richards DA, Shen CC (2004) Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432:740–743

    Google Scholar 

  • Wang PX, Clemens S, Beaufort L, Braconnot P, Dickens GR, Huber M, Jian ZM, Kershaw P, Sarnthein M (2005) Evolution and variability of the Asian monsoon system: state of the art and outstanding issues. Quat Sci Rev 24:595–629

    Google Scholar 

  • Wang Y, Cheng H, Edwards RL, Kong X, Shao X, Chen S, Wu J, Jiang X, Wang X, An Z (2008) Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451:1090–1093

    Google Scholar 

  • Winckler G, Anderson RF, Fleisher MQ, Mcgee D, Mahowald N (2008) Covariant glacial-interglacial dust fluxes in the equatorial Pacific and Antarctica. Science 320:93–96

    Google Scholar 

  • Wolff E (2011) Global change: methane and monsoons. Nature 470(7332):49–50

    Google Scholar 

  • Wolff E, Spahni R (2007) Methane and nitrous oxide in the ice core record. Phil Trans R Soc A 365:1775–1792

    Google Scholar 

  • Wyrwoll KH, Miller GH (2001) Initiation of the Australian summer monsoon 14,000 years ago. Quat Int 83–85:119–128

    Google Scholar 

  • Wyrwoll KH, Valdes P (2003) Insolation forcing of the Australian monsoon as controls of Pleistocene mega-lake events. Geophys Res Lett 30:2279. doi:10.1029/2003GL018486

    Google Scholar 

  • Yasunari T (2007) Role of land-atmosphere interaction on Asian monsoon climate. J Meteorol Soc Jpn 85B:55–75

    Google Scholar 

  • Yin QZ, Guo ZT (2006) Mid-Pleistocene vermiculated red soils in southern China as an indication of unusually strengthened East Asian monsoon. Chin Sci Bull 51:213–220

    Google Scholar 

  • Yuan D, Cheng H, Lawrence Edwards R, Dykoski CA, Kelly MJ, Zhang M, Qing J, Lin Y, Wang Y, Wu J, Dorale JA, An Z, Cai Y (2004) Timing, duration, and transitions of the last interglacial Asian monsoon. Science 304:575–578

    Google Scholar 

  • Zagwijn W (1996) The cromerian complex stage of the Netherlands and correlation with other areas in Europe. In: Tunrner C (ed) The early Middle Pleistocene in Europe. Balkema, Rotterdam, pp 145–172

    Google Scholar 

  • Zheng Z, Lei ZQ (1999) A 400,000 year record of vegetational and climatic changes from a volcanic basin, Leizhou Peninsula, southern China. Palaeogeogra Palaeoecol Palaeocl 145:339–362

    Google Scholar 

  • Ziegler M, Lourens LJ, Tuenter E, Reichart GJ (2010) High Arabian Sea productivity conditions during MIS 13—odd monsoon event or intensified overturning circulation at the end of the Mid-Pleistocene transition? Clim Past 6(1):63–76. doi:10.5194/cp-6-63-2010

    Google Scholar 

Download references

Acknowledgments

This study is supported by the National Basic Research Program of China (2010CB950200) and the National Natural Science Foundation of China (40730104). Thanks are extended to Prof. W. F. Ruddiman and Prof. P. X. Wang for constructive advices and discussions. We also thank the two anonymous reviewers for their comments and suggestions that have greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengtang Guo.

Additional information

This paper is a contribution to the special issue on Global Monsoon Climate, a product of the Global Monsoon Working Group of the Past Global Changes (PAGES) project, coordinated by Pinxian Wang, Bin Wang, and Thorsten Kiefer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Z., Zhou, X. & Wu, H. Glacial-interglacial water cycle, global monsoon and atmospheric methane changes. Clim Dyn 39, 1073–1092 (2012). https://doi.org/10.1007/s00382-011-1147-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1147-5

Keywords

Navigation