Skip to main content
Log in

Sensitivity of MJO simulations to diabatic heating profiles

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The difficulty for global atmospheric models to reproduce the Madden–Julian oscillation (MJO) is a long-lasting problem. In an attempt to understand this difficulty, simple numerical experiments are conducted using a global climate model. This model, in its full paramterization package (control run), is capable of producing the gross features of the MJO, namely, its planetary-scale, intraseasonal, eastward slow propagation. When latent heating profiles in the model are artificially modified, the characteristics of the simulated MJO changed drastically. Intraseasonal perturbations are dominated by stationary component over the Indian and western Pacific Oceans when heating profiles are top heavy (maximum in the upper troposphere). In contrast, when diabatic heating is bottom heavy (maximum in the lower troposphere), planetary-scale, intraseasonal, eastward propagating perturbations are reproduced with a phase speed similar to that of the MJO. The difference appears to come from surface and low-level moisture convergence, which is much stronger and more coherent in space when the heating profile is bottom heavy than when it is top heavy. These sensitivity experiments, along with other theoretical, numerical, and observational results, have led to a hypothesis that the difficulty for global models to produce the MJO partially is rooted in a lack of sufficient diabatic heating in the lower troposphere, presumably from shallow convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Bergman JW, Hendon HH (2000) Cloud radiative forcing of the low latitude tropospheric circulation: linear calculations. J Atmos Sci 57:2225–2245

    Google Scholar 

  • Bessafi M, Wheeler MC (2006) Modulation of south Indian Ocean tropical cyclones by the Madden–Julian Oscillation and convectively coupled equatorial waves. Mon Weather Rev 134:638–656. doi:10.1175/MWR3087.1

    Article  Google Scholar 

  • Bond NA, Vecchi GA (2003) The influence of the Madden–Julian oscillation on precipitation in Oregon and Washington. Weather Forecast 18:600–613. doi:10.1175/1520-0434(2003)018<0600:TIOTMO>2.0.CO;2

    Article  Google Scholar 

  • Chang C-P, Lim H (1988) Kelvin wave-CISK: a possible mechanism for the 30–50 day oscillation. J Atmos Sci 45:1709–1720

    Google Scholar 

  • Collins WD et al (2006) The community climate system model, version 3 (CCSM3). J Clim 19:2122–2143

    Google Scholar 

  • Crum FX, Dunkerton TJ (1992) Analytic and numerical models of wave-CISK with conditional heating. J Atmos Sci 49:1693–1708

    Google Scholar 

  • Edwards JM, Slingo A (1996) Studies with a flexible new radiation code. I: choosing a configuration for a large-scale model. Q J R Meteorol Soc 122:689–719. doi:10.1002/qj.49712253107

    Article  Google Scholar 

  • Flatau M, Flatau PJ, Phoebus P, Niiler PP (1997) The feedback between equatorial convection and local radiative and evaporative processes: the implications for intraseasonal oscillations. J Atmos Sci 54:2373–2386. doi:10.1175/1520-0469(1997)054<2373:TFBECA>2.0.CO;2

    Article  Google Scholar 

  • Frank WM, Roundy PE (2006) The role of tropical waves in tropical cyclogenesis. Mon Weather Rev 134:2397–2417. doi:10.1175/MWR3204.1

    Article  Google Scholar 

  • Grabowski WW, Moncrieff MW (2005) Moisture-convection feedback in the tropics. Q J R Metab Soc 130:3081–3104. doi:10.1256/qj.03.135

    Article  Google Scholar 

  • Hartmann DL, Hendon HH, Houze RA Jr (1984) Some implications of the mesoscale circulations in tropical cloud clusters for large-scale dynamics and climate. J Atmos Sci 41:113–121

    Google Scholar 

  • Hendon HH, Liebmann B (1990) The intraseasonal (30–50 day) oscillation of the Australian summer monsoon. J Atmos Sci 47:2909–2923

    Article  Google Scholar 

  • Hendon HH (2000) Impact of air–sea coupling on the Madden–Julian oscillation in a general circulation model. J Atmos Sci 57:3939–3952

    Google Scholar 

  • Higgins RW, Shi W (2001) Intercomparison of the principal modes of interannual and intraseasonal variability of the North American monsoon system. J Clim 14:403–417. doi:10.1175/1520-0442(2001)014<0403:IOTPMO>2.0.CO;2

    Article  Google Scholar 

  • Holtslag AAM, Boville B (1993) Local versus nonlocal boundary-layer diffusion in a global climate model. J Clim 6:1825–1842. doi:10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2

    Article  Google Scholar 

  • Houze RA Jr (1989) Observed structure of mesoscale convective systems and implications for large-scale heating. Q J R Meteorol Soc 115:425–461. doi:10.1002/qj.49711548702

    Article  Google Scholar 

  • Hu Q, Randall DA (1994) Low-frequency oscillations in radiative-convective systems. J Atmos Sci 51:1089–1099. doi:10.1175/1520-0469(1994)051<1089:LFOIRC>2.0.CO;2

    Article  Google Scholar 

  • Jia xiaolong, Numerical Simulations of the Tropical Intraseasonal Oscillation, Doctor’s thesis, Institute of Atmospheric Physics, Chinese Academy of Sciences, 2006

  • Johnson RH, Rickenbach TM, Rutledge SA, Ciesielski PE, Schubert WH (1999) Trimodal characteristics of tropical convection. J Clim 12:2397–2418. doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gaudin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K, Ropelewski C, Wang J, Leetrnaa A, Reynolds R, Jenne R, Joseph D (1996) NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–471

  • Kessler WS, McPhaden MJ, Weickmann KM (1995) Forcing of intraseasonal Kelvin waves in the equatorial Pacific. J Geophys Res 100:10613–10631. doi:10.1029/95JC00382

    Article  Google Scholar 

  • Kiladis GN, Straub KH, Haertel PT (2005) Zonal and vertical structure of the Madden-Julian oscillation. J Atmos Sci 62:2809–2890. doi:10.1175/JAS3520.1

    Article  Google Scholar 

  • Krishinamurti TN, Subrahmann D (1982) The 30-50 day mode at 850mb during MONEX. J Atmos Sci 39:2088–2095. doi:10.1175/1520-0469(1982)039<2088:TDMAMD>2.0.CO;2

    Article  Google Scholar 

  • Lau KM, Chan PH (1986) Aspects of the 40–50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon Weather Rev 114:1354–1367. doi:10.1175/1520-0493(1986)114<1354:AOTDOD>2.0.CO;2

    Article  Google Scholar 

  • Lau KM, Peng L (1987) Origin of low-frequency (intraseasonal) oscillation in the tropical atmosphere, Part I: basic theory. J Atmos Sci 45:1781–1791. doi:10.1175/1520-0469(1988)045<1781:OTDOIO>2.0.CO;2

    Article  Google Scholar 

  • Lau K-M, Shen S (1988) On the dynamics of intraseasonal oscillations and ENSO. J Atmos Sci 45:1781–1797. doi:10.1175/1520-0469(1988)045<1781:OTDOIO>2.0.CO;2

    Article  Google Scholar 

  • Lawrence DM, Webster PJ (2002) The boreal summer intraseasonal oscillation: relationship between northward and eastward movement of convection. J Atmos Sci 59:1593–1606. doi:10.1175/1520-0469(2002)059<1593:TBSIOR>2.0.CO;2

    Article  Google Scholar 

  • Li C (1983) Convection condensation heating and unstable modes in the atmosphere. Chin J Atmos Sci 7:260–268 in Chinese

    Google Scholar 

  • Li C (1985) Actions of summer monsoon troughs (ridges) and tropical cyclone over South Asia and the moving CISK mode. Scientia Sin B 28:1197–1206

    Google Scholar 

  • Li C, Zhou Y (1994) Relationship between intraseasonal oscillation in the tropical atmosphere and ENSO. Chin J Geophys 37:213–223 in Chinese

    Google Scholar 

  • Li C, Smith I (1995) Numerical simulation of the tropical intraseasonal oscillation and the effect of warm SSTs. Acta Meteor Sin 9:1–12

    Google Scholar 

  • Li C, Li G (1997) Evolution of intraseasonal oscillation over the tropical western Pacific/South China Sea and its effect to the summer precipitation in Southern China. Adv Atmos Sci 14:246–254. doi:10.1007/s00376-997-0053-6

    Article  Google Scholar 

  • Li C, Long Z, Zhang Q (2001) Strong/weak summer monsoon activity over the South China Sea and atmospheric intraseasonal oscillation. Adv Atmos Sci 18:1146–1160. doi:10.1007/s00376-001-0029-x

    Article  Google Scholar 

  • Li C, Long Z (2002) Intraseasonal oscillation anomalies in the tropical atmosphere and El Nino events. Exchanges 7(2):12–15

    Google Scholar 

  • Liebmann B, Hendon HH, Glick JD (1994) The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden-Julian oscillation. J Meteorol Soc Jpn 72:401–411

    Google Scholar 

  • Lin J, Mapes BE, Zhang M, Newman M (2004) Stratiform precipitation, vertical heating profiles, and the Madden-Julian Oscillation. J Atmos Sci 61:296–309. doi:10.1175/1520-0469(2004)061<0296:SPVHPA>2.0.CO;2

    Article  Google Scholar 

  • Lin J-L, Kiladis GN, Mapes BE, Weickmann KM, Sperber KR, Lin W et al (2006) Tropical intraseasonal variability in 14 IPCC AR4 climate models Part I: convective signals. J Clim 19:2665–2690. doi:10.1175/JCLI3735.1

    Article  Google Scholar 

  • Lin X, Johnson RH (1996) Heating, moistening and rainfall over the western Pacific warm pool during TOGA COARE. J Atmos Sci 53:3367–3383. doi:10.1175/1520-0469(1996)053<3367:HMAROT>2.0.CO;2

    Article  Google Scholar 

  • Maloney ED, Hartmann DL (1998) Frictional moisture convergence in a composite life cycle of the Madden-Julian Oscillation. J Clim 11:2387–2403. doi:10.1175/1520-0442(1998)011<2387:FMCIAC>2.0.CO;2

    Article  Google Scholar 

  • Maloney ED, Hartmann DL (2000) Modulation of eastern North Pacific hurricanes by the Madden-Julian oscillation. J Clim 13:1451–1460. doi:10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2

    Article  Google Scholar 

  • Maloney ED, Hartmann DL (2001) The sensitive of intraseasonal variability in the NCAR CCM3 to changes in convection parameteriazation. J Clim 14:2015–2034. doi:10.1175/1520-0442(2001)014<2015:TSOIVI>2.0.CO;2

    Article  Google Scholar 

  • Manabe S, Smagorinsky J, Strickler RF (1965) Simulated climatology of general circulation model with a hydrologic cycle. Mon Weather Rev 93:769–798. doi:10.1175/1520-0493(1965)093<0769:SCOAGC>2.3.CO;2

    Article  Google Scholar 

  • Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Meteorol Soc Jpn 44:25–43

    Google Scholar 

  • Matthews AJ (2004) Intraseasonal variability over tropical Africa during northern summer. J Clim 17:2427–2440. doi:10.1175/1520-0442(2004)017<2427:IVOTAD>2.0.CO;2

    Article  Google Scholar 

  • Mo KC (2000) The association between intraseasonal oscillations and tropical storms in the Atlantic basin. Mon Weather Rev 128:4097–4107. doi:10.1175/1520-0493(2000)129<4097:TABIOA>2.0.CO;2

    Article  Google Scholar 

  • Mu M, Li C (2000) The onset of summer monsoon over the South China Sea in 1998 and action of atmospheric intraseasonal oscillation. Clim Environ Reserch 5:375–387 in Chinese

    Google Scholar 

  • Paegle JN, Byerle LA, Mo KC (2000) Intraseasonal modulation of South American summer precipitation. Mon Weather Rev 128:837–850. doi:10.1175/1520-0493(2000)128<0837:IMOSAS>2.0.CO;2

    Article  Google Scholar 

  • Raymond DJ (2001) A new model of the Madden-Julian oscillation. J Atmos Sci 58:2807–2819. doi:10.1175/1520-0469(2001)058<2807:ANMOTM>2.0.CO;2

    Article  Google Scholar 

  • Schneider EK, Lindzen RS (1977) Axially symmetric steady-state models of the basic state for instability and climate studies. Part I. Linearized calculations. J Atmos Sci 34:263–279

    Google Scholar 

  • Sellers PJ, Min Y, Sud YC, Dalcher A (1986) A simple biosphere model (SIB) for use within general circulation models. J Atmos Sci 43:505–531. doi:10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2

    Article  Google Scholar 

  • Simmonds I (1985) Analysis of the “spinning” of a global circulation model. J Geophys Res 90:5637–5660. doi:10.1029/JD090iD03p05637

    Article  Google Scholar 

  • Simpson J, Kummerow C, Tao W-K, Adler R (1996) On the tropical ainfall measuring mission (TRMM). Meteorol Atmos Phys 60:19–36. doi:10.1007/BF01029783

    Article  Google Scholar 

  • Schumacher C, Houze RA Jr, Kraucunas I (2004) The tropical dynamical response to latent heating estimates derived from the TRMM precipitation radar. J Atmos Sci 61:1341–1358. doi:10.1175/1520-0469(2004)061<1341:TTDRTL>2.0.CO;2

    Article  Google Scholar 

  • Slingo A (1980) A cloud parameterization scheme derived from GATE data for use with a numerical model. Q J R Meteorol Soc 106:747–770. doi:10.1002/qj.49710645008

    Article  Google Scholar 

  • Slingo A (1987) The development and verification of a cloud prediction scheme for the ECMWF model. Q J R Meteorol Soc 113:899–927. doi:10.1256/smsqj.47708

    Article  Google Scholar 

  • Slingo, J. M. and Coauthers, Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 1996, 13: 325–357. doi:10.1007/BF00231106

  • Slingo JM, Inness P, Neale R, Woolnough S, Yang G-Y (2003) Scale interactions on diurnal to seasonal timescales and their relevance to model systematic errors. Ann Geophys 46:139–155

    Google Scholar 

  • Sperber KR (2003) Propagation and the vertical structure of the Madden-Julian Oscillation. Mon Weather Rev 131:3018–3037. doi:10.1175/1520-0493(2003)131<3018:PATVSO>2.0.CO;2

    Article  Google Scholar 

  • Sperber KR (2004) Madden-Julian variability in NCAR CAM 20 and CCSM2.0. Clim Dyn 23:259–278. doi:10.1007/s00382-004-0447-4

    Article  Google Scholar 

  • Sperber KR, Gualdi S, Legutke S, Gayler V (2005) The Madden–Julian oscillation in ECHAM4 coupled and uncoupled GCMs. Clim Dyn 25:117–140

    Article  Google Scholar 

  • Sui C-H, Lau K-M (1989) Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part. II: Structure and propagation of mobile wave-CISK modes and their modification by lower boundary forcings. J Atmos Sci 46:37–56

    Google Scholar 

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Wea Rev 117:1779–1800

    Google Scholar 

  • Tompkins AM (2001) Organization of tropical convection in low vertical wind shears: the role of water vapor. J Atmos Sci 58:529–545. doi:10.1175/1520-0469(2001)058<0529:OOTCIL>2.0.CO;2

    Article  Google Scholar 

  • Waliser DE, Lau KM, Kim JH (1999) The influence of coupled sea surface temperatures on the Madden-Julian oscillation: a model perturbation experiment. J Atmos Sci 56:333–358. doi:10.1175/1520-0469(1999)056<0333:TIOCSS>2.0.CO;2

    Article  Google Scholar 

  • Waliser DE, Lau KM, Stern W, Jones C (2003) Potential predictability of the Madden-Julian Oscillation. Bull Am Meteorol Soc 84:33–50. doi:10.1175/BAMS-84-1-33

    Article  Google Scholar 

  • Wang B (1988) Dynamics of tropical low-frequency waves: an analysis of the moist Kelvin wave. J Atmos Sci 45:2051–2065. doi:10.1175/1520-0469(1988)045<2051:DOTLFW>2.0.CO;2

    Article  Google Scholar 

  • Wang B (2005) Theory, 307–360. In: Lau WKM, Waliser DE (eds) Intraseasonal variability of the atmosphere–ocean climate system. Praxis, Chichester, pp 436

  • Wang B, Rui H (1990) Synoptic climatology of transient tropical intraseasonal convective anomalies: 1975–1985. Meteorol Atmos Phys 44:43–61. doi:10.1007/BF01026810

    Article  Google Scholar 

  • Wang W, Schlesinger ME (1999) The dependence on convective parameterization of the tropical intraseasonal oscillation simulated by the UIUC 11-layer atmospheric GCM. J Clim 12:1423–1457. doi:10.1175/1520-0442(1999)012<1423:TDOCPO>2.0.CO;2

    Article  Google Scholar 

  • Wang Z-Z, Wu G-X, Liu P, Wu T-W (2005) The development of Goals/LASG AGCM and its global climatological features in climate simulation I-influence of horizontal resulotion. J Trop Meteorol 21(3):225–237 In Chinese

    Google Scholar 

  • Wheeler M, Kiladis GN (1999) Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber-frequency domain. J Atmos Sci 56:374–399

    Google Scholar 

  • Wheeler MC, Hendon HH (2004) An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon Weather Rev 132:1917–1932. doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2

    Article  Google Scholar 

  • Wheeler MC, McBride JL (2005) Intraseasonal variability in the atmosphere–ocean climate system. In: Lau WKM, Waliser DE (eds) Praxis, Chichester, pp 125–173

  • Wu G-X, Liu H,Zhao Y-C and Liw-p, (1996) A nine-layer atmospheric general circulation model and its performance. Adv Atmos Sci 13(1):1–18. doi:10.1007/BF02657024

  • Wu G, Zhang X, Liu H, Yu Y, Jin X, Guo Y, Sun S, Li W, Wang B, Shi G, 1997 Global ocean-atmosphere-land system model of LASG (GOALS/LASG) and its performance in simulation study, Quart. J. Appl. Meteor., Supplement Issue, 15–28. (In Chinese)

  • Wu Z (2003) A shallow CISK, deep equilibrium mechanism for the interaction between large-scale convection and large-scale circulations in the tropics. J Atmos Sci 60:377–392. doi:10.1175/1520-0469(2003)060<0377:ASCDEM>2.0.CO;2

    Article  Google Scholar 

  • Wu Z, Sarachik ES, Battisti DS (2000) Vertical structure of convective heating and the three-dimensional structure of the forced circulation on an equatorial beta plane. J Atmos Sci 57:2169–2187. doi:10.1175/1520-0469(2000)057<2169:VSOCHA>2.0.CO;2

    Article  Google Scholar 

  • Wu Z, Sarachik ES, Battisti DS (2001) Thermally driven tropical circulations under Rayleigh friction and Newtonian cooling: analytic solutions. J Atmos Sci 58:724–741. doi:10.1175/1520-0469(2001)058<0724:TDTCUR>2.0.CO;2

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteor Soc 78:2539–2558

    Google Scholar 

  • Xue Y, Sellers PJ, Linter JL, Shukla J (1991) A simplified biosphere model for global climate studies. J Clim 4:345–364. doi:10.1175/1520-0442(1991)004<0345:ASBMFG>2.0.CO;2

    Article  Google Scholar 

  • Hui Yang, Chongyin Li (2003) The relation between atmospheric intraseasonal oscillation and summer severe flood and drought in the Changjiang-Huaihe basin. Adv Atmos Sci 20:540–553. doi:10.1007/BF02915497

    Article  Google Scholar 

  • Yanai M, Esbensen S, Chu J-H (1973) Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J Atmos Sci 30:611–627

    Google Scholar 

  • Zhang C (2005) 2005: Madden-Julian Oscillation. Rev Geophys 43:RG2003. doi:10.1029/2004RG000158

  • Zhang GJ, McFarlane NA (1995) Sensitivity of climate simulations to the parameterization of cumulus convection in the CCC-GCM. Atmos Ocean 3:407–446

    Google Scholar 

  • Zhang C, Gottschalck J (2002) SST anomalies of ENSO and the Madden-Julian Oscillation in the equatorial Pacific. J Clim 15:2429–2445. doi:10.1175/1520-0442(2002)015<2429:SAOEAT>2.0.CO;2

    Article  Google Scholar 

  • Zhang C, Dong M, Gualdi S, Hendon HH, Maloney ED, Marshall A, et al (2006) Simulations of the Madden-Julian oscillation in four pairs of coupled and uncoupled global models. Clim Dyn 27:573–592. doi:10.1007/s00382-006-0148-2

    Google Scholar 

  • Zhang G, Mu M (2005) Simulation of the Madden–Julian oscillation in the NCAR CCM3 using a revise Zhang–McFarlane convection parameterization scheme. J Clim 18:4046–4064. doi:10.1175/JCLI3508.1

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Brian Mapes, Eric Maloney, Paul Roundy, Jun-Ichi Yano and two anonymous reviewers for their comments on an earlier version of the manuscript. This study was support by the National Nature Science Foundation of China under grant no. 40575027 (Li, Jia, and Ling), by a grant from City University of Hong Kong under grant no. 7002329 (Zhou), and by US National Science Foundation under grant ATM0739402 (Zhang). Chidong Zhang thanks the Laboratory for Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences for hosting his visits in 2006 and 2007, during which he collaborated with LASG scientists on this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chidong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Jia, X., Ling, J. et al. Sensitivity of MJO simulations to diabatic heating profiles. Clim Dyn 32, 167–187 (2009). https://doi.org/10.1007/s00382-008-0455-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-008-0455-x

Keywords

Navigation