Skip to main content

Advertisement

Log in

Impact of a 5-year winter cover crop rotational system on the molecular diversity of arbuscular mycorrhizal fungi colonizing roots of subsequent soybean

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The impact of winter cover crops, specifically wheat (Triticum aestivum L.), red clover (Trifolium pratense L.), and rapeseed (Brassica napus L.) or winter fallow, on community composition of arbuscular mycorrhizal fungi (AMF) in subsequent soybean roots was investigated in a 5-year field trial on andosolic soils in Japan. Soybean roots were sampled at full-flowering and analyzed for AMF communities using a partial LSU rDNA region. Phylogenetic analysis detected 22 AMF phylotypes, including eight Glomus, three Gigaspora, two Scutellospora, three Acaulospora, two Rhizophagus, and one of Funneliformis, Diversispora, Paraglomus, and an unknown glomeromycete in the roots. The 5-year rotation of different winter cover crops or winter fallow did not impact the molecular diversity of AMF communities colonizing the roots of subsequent soybean. In all of the rotations, Glomus and Gigaspora phylotypes were common to soybean roots over the 5-year period. Redundancy analysis (RDA) demonstrated that AMF communities in the roots of subsequent soybean were not significantly different among winter cover crop rotations or fallow. However, AMF communities in soybean roots were clearly influenced by rotation year suggesting that climate or other environmental factors were more important than winter cover cropping system management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alguacil MM, Lumini E, Roldán A, Salinas-García JR, Bonfante P, Bianciotto V (2008) The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops. Ecol Appl 18:527–536

    Article  CAS  PubMed  Google Scholar 

  • Alguacil MM, Torrecillas E, Hernández G, Roldán A (2012) Changes in the diversity of soil arbuscular mycorrhizal fungi after cultivation for biofuel production in a guantanamo (Cuba) tropical system. PLoS ONE 7:e34887. doi:10.1371/journal.pone.0034887

    Article  CAS  PubMed Central  Google Scholar 

  • Altieri M (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31

    Article  Google Scholar 

  • An ZQ, Hendrix JW, Hershman DE, Ferriss RS, Henson GT (1993) The influence of crop rotation and soil fumigation on a mycorrhizal fungal community associated with soybean. Mycorrhiza 3:171–182

    Article  Google Scholar 

  • Bainard LD, Koch AM, Gordon AM, Newmaster SG, Thevathasan NV, Klironomos JN (2011) Influence of trees on the spatial structure of arbuscular mycorrhizal communities in a temperate tree-based intercropping system Agric. Ecosyst Environ 144:13–20

    Article  Google Scholar 

  • Balestrini R, Magurno F, Walker C, Lumini E, Bianciotto V (2010) Cohorts of arbuscular mycorrhizal fungi (AMF) in Vitis vinifera, a typical Mediterranean fruit crop. Environ Microbiol Rep 2:594–604

    Article  PubMed  Google Scholar 

  • Batten KM, Scow KM, Davies KF, Harrison SP (2006) Two invasive plants alter soil microbial community composition in serpentine grasslands. Biol Invasions 8:217–230

    Article  Google Scholar 

  • Bedini S, Avio L, Argese E, Giovanetti M (2007) Effects of long-term land use on arbuscular mycorrhizal fungi and glomalin-related soil protein. Agr Ecosys Environ 120:463–466

    Article  CAS  Google Scholar 

  • Bever JD, Pringle A, Schultz PA (2002) Dynamics within the plant–arbuscular mycorrhizal fungal mutualism: testing the nature of community feedback. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, pp 267–292

    Google Scholar 

  • Biermann B, Linderman RG (1983) Use of vesicular-arbuscular mycorrhizal roots, intraradical vesicles and extraradical vesicles as inoculum. New Phytol 95:97–105

    Article  Google Scholar 

  • Borriello R, Lumini E, Girlanda M, Bonfante P, Bianciotto V (2012) Effects of different management practices on arbuscular mycorrhizal fungal diversity in maize fields by a molecular approach. Biol Fertil Soils 48:911–922

    Article  Google Scholar 

  • Buyer JS, Teasdale JR, Roberts DP, Zasada IA, Maul JE (2010) Factor affecting soil microbial community structure in tomato cropping systems. Soil Biol Biochem 42:831–841

    Article  CAS  Google Scholar 

  • Campbell CA, Lafond GP, Zentner RP, Biederbeck VO (1991) Influence of fertilizer and straw baling on soil organic matter in a thick black chernozem in western Canada. Soil Biol Biochem 23:443–446

    Article  CAS  Google Scholar 

  • Chifflot V, Rivest D, Olivier A, Cogliastro A, Khasa D (2009) Molecular analysis of arbuscular mycorrhizal community structure and spores distribution in tree-based intercropping and forest systems. Agric Ecosyst Environ 131:32–39

    Article  CAS  Google Scholar 

  • Clapp JP, Young JPW, Merryweather JW, Fitter AH (1995) Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytol 130:259–265

    Article  Google Scholar 

  • Clark A (2007) Managing cover crops profitably, 3rd edn. Sustainable Agriculture Network Handbook Series 9, Beltsville, MD

    Google Scholar 

  • Corneo PE, Pellegrini A, Cappellin L, Gessler C, Pertot I (2013) Weeds influence soil bacterial and fungal communities. Plant Soil 373:107–123

    Article  CAS  Google Scholar 

  • Daniell TJ, Husband R, Fitter AH, Young JPW (2001) Molecular diversity of arbuscular mycorrhizal fungi colonizing arable crops. FEMS Microbiol Ecol 36:203–209

    Article  CAS  PubMed  Google Scholar 

  • Deguchi S, Shimazaki U, Uozumi S, Tawaraya K, Kawamoto H, Tanaka O (2007) White clover living mulch increases the yield of silage corn via arbuscular mycorrhizal fungus colonization. Plant Soil 291:291–299

    Article  CAS  Google Scholar 

  • Donald PA, Pierson PE, St. Martin SK, Sellers PR, Noel GR, Macguidwin AE, Faghihi J, Ferris VR, Grau CR, Jardine DJ, Melakeberhan H, Niblack TL, Stienstra WC, Tylka GL, Wheeler TA, Wysong DS (2006) Assessing Heterodera glycines-resistant and susceptible cultivar yield response. J Nematol 38:76–82

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dumbrell AJ, Ashton PD, Aziz N, Feng G, Nelson M, Dytham C, Fitter AH, Helgason T (2011) Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytol 190:794–804

    Article  CAS  PubMed  Google Scholar 

  • Fredeen AL, Terry N (1988) Influence of vesicular–arbuscular mycorrhizal infection and soil phosphorus level on growth and carbon metabolism of soybean. Can J Bot 66:2311–2316

    Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular–arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Giovannetti M, Azzolini D, Citernesi AS (1999) Anastomosis formation and nuclear and protoplasmic exchange in arbuscular mycorrhizal fungi. Appl Environ Microbiol 65:5571–5575

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giovannetti M, Fortuna P, Citernesi AS, Morini S, Nuti MP (2001) The occurrence of anastomosis formation and nuclear exchange in intact arbuscular mycorrhizal networks. New Phytol 151:717–724

    Article  Google Scholar 

  • Gollotte A, van Tuinen D, Atkinson D (2004) Diversity of arbuscular mycorrhizal fungi colonizing roots of the grass species Agrostis capillaries and Lolium perenne in a field experiment. Mycorrhiza 14:111–117

    Article  PubMed  Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35

    Article  Google Scholar 

  • Gosling P, Mead A, Proctor M, Hammond JP, Bending GD (2013) Contrasting arbuscular mycorrhizal communities colonizing different host plants show a similar response to a soil phosphorus concentration gradient. New Phytol 198:546–556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo YJ, Ni Y, Raman H, Wilson BAL, Ash GJ, Wang AS, Li GD (2012) Arbuscular mycorrhizal fungal diversity in perennial pastures; responses to long-term lime application. Plant Soil 351:389–403

    Article  CAS  Google Scholar 

  • Gustafson DJ, Casper BB (2006) Differential host plant performance as a function of soil arbuscular mycorrhizalfungal communities: experimentally manipulating co-occurring Glomus species. Plant Ecol 183:257–263

    Article  Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web? Nature 394:431

    Article  CAS  PubMed  Google Scholar 

  • Helgason T, Merryweather JW, Denison J, Wilson P, Young JPW, Fitter AH (2002) Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. J Ecol 90:371–384

    Article  Google Scholar 

  • Higo M, Isobe K, Kang DJ, Ujiie K, Drijber RA, Ishii R (2010) Inoculation with arbuscular mycorrhizal fungi or crop rotation with mycorrhizal plants improves the growth of maize in limed acid sulfate soil. Plant Prod Sci 13:74–79

    Article  Google Scholar 

  • Higo M, Isobe K, Maekawa T, Ishii R (2011a) Community structure of arbuscular mycorrhizal fungi colonized in various winter crop roots. Soil Microorg 65:3–10

    Google Scholar 

  • Higo M, Isobe K, Kang DJ, Maekawa T, Ishii R (2011b) Molecular diversity and spore density of indigenous arbuscular mycorrhizal fungi in acid sulfate soil in Thailand. Ann Microbiol 61:383–389

    Article  Google Scholar 

  • Higo M, Isobe K, Yamaguchi M, Drijber RA, Ishii R (2013) Diversity and vertical distribution of indigenous arbuscular mycorrhizal fungi under two soybean rotational systems. Biol Ferti Soils 49:1085–1096

    Article  Google Scholar 

  • Hijri I, Sykorova Z, Oehl F, Ineichen K, Mäder P, Wiemken A, Redecker D (2006) Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Mol Ecol 15:2277–2289

    Article  CAS  PubMed  Google Scholar 

  • Husband R, Herre EA, Turner SL, Gallery R, Young JPW (2002) Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Mol Ecol 11:2669–2678

    Article  CAS  PubMed  Google Scholar 

  • Isobe K, Tsuboki Y (1999) Effects of winter crops on the density of arbuscular mycorrhizal fungi and the growth of succeeding kidney beans. Jpn J Crop Sci 68:118–125

    Article  Google Scholar 

  • Isobe K, Aizawa E, Iguchi Y, Ishii R (2007) Distribution of arbuscular mycorrhizal fungi in upland field soil of Japan 1. Relationship between spore density and the soil environment factor. Plant Prod Sci 10:122–128

    Article  CAS  Google Scholar 

  • Isobe K, Sugimura H, Maeshima T, Ishii R (2008) Distribution of arbuscular mycorrhizal fungi in upland field soil of Japan 2. Spore density of arbusclar mycorrhizal fungi and infection ratio soybean and maize fields. Plant Prod Sci 11:171–177

    Article  Google Scholar 

  • Isobe K, Maruyama K, Nagai S, Higo M, Maekawa T, Mizonobe G, Drijber RA, Ishii R (2011) Arbuscular mycorrhizal fungal community structure in soybean roots: comparison between Kanagawa and Hokkaido, Japan. Adv Microbiol 1:13–22

    Article  Google Scholar 

  • Isobe K, Higo M, Kondo T, Sato N, Takeyama S, Torigoe Y (in press, accepted in 2013) Effect of winter crop species on arbuscular mycorrhizal fungal colonization and subsequent soybean yields. Plant Prod Sci

  • Jansa J, Mozafar A, Kuhn G, Anken T, Ruh R, Sanders IR, Frossard E (2003) Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol Appl 13:1164–1176

    Article  Google Scholar 

  • Johnson NC, Pfleger FL, Crookston RK, Simmons SR, Copeland PJ (1991) Vesicular–arbuscular mycorrhizas respond to corn and soybean cropping history. New Phytol 117:657–663

    Article  Google Scholar 

  • Johnson NC, Tillman D, Wedin D (1992) Plant and soil controls on mycorrhizal fungal communities. Ecology 73:2034–2042

    Article  Google Scholar 

  • Johnson D, Vandenkoornhuyse PJ, Leake JR, Gilbert L, Booth RE, Grime JP, Young JPW, Read DJ (2004) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol 161:503–515

    Article  Google Scholar 

  • Jordan NR, Zhang J, Huerd S (2000) Arbuscular–mycorrhizal fungi: potential roles in weed management. Weed Res 40:397–410

    Article  Google Scholar 

  • Kabir Z, Koide RT (2000) The effect of dandelion or a cover crop on mycorrhiza inoculum potential, soil aggregation and yield of maize. Agric Ecosyst Environ 78:167–174

    Article  Google Scholar 

  • Karasawa T, Takebe M (2012) Temporal or spatial arrangements of cover crops to promote arbuscular mycorrhizal colonization and P uptake of upland crops grown after nonmycorrhizal crops. Plant Soil 353:355–366

    Article  CAS  Google Scholar 

  • Karasawa T, Kasahara Y, Takebe M (2002) Differences in growth responses of maize to preceding cropping caused by fluctuation in the population of indigenous arbuscular mycorrhizal fungi. Soil Biol Biochem 34:851–857

    Article  CAS  Google Scholar 

  • Kennedy PG, Hortal S, Bergemann SE, Bruns TD (2007) Competitive interactions among three ectomycorrhizal fungi and their relation to host plant performance. J Ecol 95:1338–1345

    Article  CAS  Google Scholar 

  • Lehman RM, Taheri WI, Osborne SL, Buyer JS, Douds DD (2012) Fall cover cropping can increase arbuscular mycorrhizae in soils supporting intensive agricultural production. Appl Soil Ecol 61:300–304

    Article  Google Scholar 

  • Lekberg Y, Koide RT (2005) Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. New Phytol 168:189–204

    Article  CAS  PubMed  Google Scholar 

  • Lekberg Y, Koide RT, Twomlow SJ (2008) Effect of agricultural management practices on arbuscular mycorrhizal fungal abundance in low-input cropping systems of southern Africa: a case study from Zimbabwe. Biol Ferti Soils 44:917–923

    Article  Google Scholar 

  • Lekberg Y, Schnoor T, Kjøller R, Gibbons SM, Hansen LH, Al-Soud WA, Sorensen SJ, Rosendahl S (2012) 454-Sequencing reveals stochastic local reassembly and high disturbance tolerance within arbuscular mycorrhizal fungal communities. J Ecol 100:151–160

    Article  Google Scholar 

  • Liu Y, He L, An LZ, Helgason T, Feng HY (2009) Arbuscular mycorrhizal dynamics in a chronosequence of Caragana korshinskii plantations. FEMS Microbiol Ecol 67:81–92

    Article  CAS  PubMed  Google Scholar 

  • Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V (2010) Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol 12:2165–2179

    CAS  PubMed  Google Scholar 

  • Lutgen ER, Rillig MC (2004) Influence of spotted knapweed (Centaurea maculosa) management treatments on arbuscular mycorrhizae and soil aggregation. Weed Sci 52:172–177

    Article  CAS  Google Scholar 

  • Marler MJ, Zabinski CA, Callaway RM (1999) Mycorrhizae indirectly enhancecompetitive effects of an invasive forb on a native bunchgrass. Ecology 80:1180–1186

    Article  Google Scholar 

  • Mathimaran N, Ruh R, Jama B, Verchot L, Frossard E, Jansa J (2007) Impact of agricultural management on arbuscular mycorrhizal fungal communities in Kenyan ferralsol. Agric Ecosyst Environ 119:22–32

    Article  Google Scholar 

  • Michalson EL (1999) A history of conservation research in the Pacific Northwest. In: Michalson EL, Papendick RI, Carlson JE (eds) Conservation farming in the United States. The methods and accomplishments of the STEEP Program. CRC, Boca Raton, pp 1–10

    Google Scholar 

  • Ministry of Agriculture, Forestry and Fisheries (2012) Statistical report on agriculture, forestry and fisheries. Available online at http://www.maff.go.jp/j/tokei/kouhyou/sakumotu/menseki/index.html

  • Mummey DL, Rillig MC (2006) The invasive plant species Centaurea maculosaalters arbuscular mycorrhizal fungal communities in the field. Plant Soil 288:81–90

    Article  CAS  Google Scholar 

  • Negrete-Yankelevich S, Maldonado-Mendoza I, Lázaro-Castellanos O, Sangabriel-Conde W, Martínez-Álvarez JC (2013) Arbuscular mycorrhizal root colonization and soil P availability are positively related to agrodiversity in Mexican maize polycultures. Biol Fert Soils 49:201–212

    Article  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe. Appl Environ Microbiol 69:2816–2824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Wiemken A, Boller T (2009) Distinct sporulation dynamics of arbuscular mycorrhizal fungal communities from different agroecosystems in long-term microcosms. Agric Ecosyst Environ 134:257–268

    Article  Google Scholar 

  • Oka N, Karasawa T, Okazaki K, Takebe M (2010) Maintenance of soybean yield with reduced phosphorus application by previous cropping with mycorrhizal plants. Soil Sci Plant Nutr 56:824–830

    Article  CAS  Google Scholar 

  • Öpik M, Metsis M, Daniell TJ, Zobel M, Moora M (2009) Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol 184:424–437

    Article  PubMed  Google Scholar 

  • Öpik M, Zobel M, Cantero JJ, Davison J, Facelli JM, Hiiesalu I, Jairus T, Kalwij JM, Koorem K, Leal ME, Liira J, Metsis M, Neshataeva V, Paal J, Phosri C, Põlme S, Reier Ü, Saks Ü, Schimann H, Thiéry O, Vasar M, Moora M (2013) Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23:411–430

    Article  PubMed  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–160

    Article  Google Scholar 

  • Piotrowski JS, Denich T, Klironomos JN, Graham JM, Rillig MC (2004) The effects of arbuscular mycorrhizae on soil aggregation depend on the interaction between plant and fungal species. New Phytol 164:365–373

    Article  Google Scholar 

  • Power JF, Peterson GA (1998) Nitrogen transformations, utilization, and conservation as affected by fallow tillage method. Soil Till Res 49:37–47

    Article  Google Scholar 

  • Reddy KN, Zablotowicz RM, Locke MA, Koger CH (2003) Cover crop, tillage, and herbicide effects on weeds, soil properties, microbial populations, and soybean yield. Weed Sci 51:987–994

    Article  CAS  Google Scholar 

  • Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531

    Article  PubMed  Google Scholar 

  • Renker C, Weißhuhn K, Kellner H, Buscot F (2006) Rationalizing molecular analysis of field-collected roots for assessing diversity of arbuscular mycorrhizal fungi: to pool, or not to pool, this is the question. Mycorrhiza 16:525–531

    Article  CAS  PubMed  Google Scholar 

  • Rosendahl S (2008) Communities, populations and individuals of arbuscular mycorrhizal fungi. New Phytol 178:253–266

    Article  PubMed  Google Scholar 

  • Sainju UM, Singh BP (1997) Winter cover crops for sustainable agricultural systems: influence on soil properties, water quality, and crop yields. HortSci 32:21–28

    Google Scholar 

  • Sasvári Z, László H, Katalin P (2011) The community structure of arbuscular mycorrhizal fungi in roots of maize grown in a 50-year monoculture. Biol Fertil Soils 47:167–176

    Article  Google Scholar 

  • Scheublin TR, Ridgway KP, Young JPW, van Der Heijden MGA (2004) Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities. Appl Environ Microbiol 70:6240–6246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schreiner RP, Mihara K (2009) The diversity of arbuscular mycorrhizal fungi amplified from grapevine roots (Vitis vinifera L.) in Oregon vineyards is seasonally stable and influenced by soil and vine age. Mycologia 101:599–611

    Article  PubMed  Google Scholar 

  • Sikes BA, Cottenie K, Klironomos JN (2009) Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas. J Ecol 97:1274–1280

    Article  Google Scholar 

  • Sikes BA, Maherali H, Klironomos JN (2012) Arbuscular mycorrhizal fungal communities change among three stages of primary sand dune succession but do not alter plant growth. Oikos 121:1791–1800

    Google Scholar 

  • Simon L, Lalonde M, Bruns TD (1992) Specific amplification of 18S fungal ribosomal genes from vesicular–arbuscular endomycorrhizal fungi colonizing roots. Appl Environ Microbiol 58:291–295

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Arbuscular mycorrhizaes. In: Smith SE, Read DJ (eds) Mycorrhizal symbiosis, 3rd edn. Academic Press, London, pp 13–187

    Chapter  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • ter Braak C, Smilauer P (2002) CANOCO reference manual and Canodraw for Windows user's guide: Software for canonical community ordination, 45th edn. Microcomputer Power, Ithaca

    Google Scholar 

  • Torrecillas E, Alguacil M, Roldán A (2012) Host preferences of arbuscular mycorrhizal fungi colonizing annual herbaceous plant species in semiarid Mediterranean prairies. Appl Environ Microbiol 78:6180–6186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trouvelot S, van Tuinen D, Hijri M, Gianinazzi-Pearson V (1999) Visualization of ribosomal DNA loci in spore interphasic nuclei of glomalean fungi by fluorescence in situ hyhridization. Mycorrhiza 8:203–206

    Article  CAS  Google Scholar 

  • Uchida T, Kobayashi H, Yoshino N (2011) Effects of arbuscular mycorrhizal colonization on soybean nutrient uptake during ripening period with barley cover. Cropping Jpn J Crop Sci 80:277–283

    Article  Google Scholar 

  • van Tuinen D, Jacquot E, Zhao B, Gollotte A, Gianinazzi-Pearson V (1998) Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Mol Ecol 7:879–887

    Article  PubMed  Google Scholar 

  • Vandenkoornhuyse P, Husband R, Daniell TJ, Watson IJ, Duck JM, Fitter AH, Young JPW (2002) Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Mol Ecol 11:1555–1564

    Article  CAS  PubMed  Google Scholar 

  • Vandenkoornhuyse P, Ridgeway K, Watson IJ, Fitter AH, Young JPW (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Mol Ecol 12:3085–3095

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen E, van der Heijden MGA, Weedon JT, Kowalchuk GA, Röling WFM (2012) Community assembly, species richness and nestedness of arbuscular mycorrhizal fungi in agricultural soils. Mol Ecol 21:2341–2353

    Article  PubMed  Google Scholar 

  • Veresoglou SD, Caruso T, Rillig MC (2013) Modelling the environmental and soil factors that shape the niches of two common arbuscular mycorrhizal fungal families. Plant Soil 368:507–518

    Article  CAS  Google Scholar 

  • Vestberg M, Kahiluoto H, Wallius E (2011) Arbuscular mycorrhizal fungal diversity and species dominance in a temperate soil with long-term conventional and low-input cropping systems. Mycorrhiza 21:351–361

    Article  PubMed  Google Scholar 

  • Wang MY, Hu LB, Wang WH, Liu ST, Li M, Liu RJ (2009) Influence of long-term fixed fertilization on diversity of arbuscular mycorrhizal fungi. Pedosphere 19:663–672

    Article  CAS  Google Scholar 

  • White CM, Weil RR (2010) Forage radish and cereal rye cover crop effects on mycorrhizal fungus colonization of maize roots. Plant Soil 328:507–521

    Article  CAS  Google Scholar 

  • Williams MM, Mortensen DA, Doran JW (1998) Assessment of weed and crop fitness in cover crop residues for integrated weed management. Weed Sci 46:595–603

    CAS  Google Scholar 

  • Wortman SE, Francis CA, Bernards M, Drijber R, Lindquist JL (2012) Optimizing cover crop benefits with diverse mixtures and an alternative termination method. Agron J 104:1425–1435

    Article  Google Scholar 

  • Wortman SE, Drijber RA, Francis CA, Lindquist JL (2013) Arable weeds, cover crops, and tillage drive soil microbial community composition in organic cropping systems. Appl Soil Ecol 72:232–241

    Article  Google Scholar 

  • Yasumoto S, Suzuki K, Matsuzaki M, Hiradate S, Oose K, Hirokane H, Okada K (2012) Effects of plant residue, root exudate and juvenile plants of rapeseed (Brassica napus L.) on the germination, growth, yield, and quality of subsequent crops in successive and rotational cropping systems. Plant Prod Sci 14:339–348

    Article  Google Scholar 

  • Zhang F, Hamel C, Kianmehr H, Smith DL (1995) Root-zone temperature and soybean [Glycine max. (L.) Merr.] vesicular–arbuscular mycorrhizae: development and interactions with the nitrogen fixing symbiosis. Environ Exp Bot 35:287–298

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masao Higo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higo, M., Isobe, K., Drijber, R.A. et al. Impact of a 5-year winter cover crop rotational system on the molecular diversity of arbuscular mycorrhizal fungi colonizing roots of subsequent soybean. Biol Fertil Soils 50, 913–926 (2014). https://doi.org/10.1007/s00374-014-0912-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-014-0912-0

Keywords

Navigation