Skip to main content
Log in

Proven and potential involvement of vitamins in interactions of plants with plant growth-promoting bacteria—an overview

  • Review
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Plant growth-promoting bacteria (PGPB) can improve plant performance in many different ways, operating via a multitude of physiological, molecular, and biochemical pathways. One of the lesser known involvements in these interactions is the role of vitamins. Vitamins can be produced by plants and bacteria and also by PGPB. The main function of vitamins is to (1) act as a cofactor in diverse metabolic pathways, (2) facilitate production of essential compounds for plants and bacteria, (3) induce resistance against pathogens, (4) directly promote plant growth, and (5) participate in energy conversion in the plant from stored compounds. Most of the roles of specific vitamins in PGPB–plant interactions are still little known or completely unknown. This overview presents what is known about vitamins detected in potential PGPB, presents proposals for the potential role of vitamins in PGPB–plant interactions based on the known function of these vitamins in plants and bacteria, and proposes research avenues in this topic that are worth exploring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

PGPB:

Plant growth-promoting bacteria

PGPR:

Plant growth-promoting rhizobacteria

CoA:

Coenzyme A

PQQ:

Pyrroloquinoline quinone

References

  • Abdel-Rahman MHM, Ali RM, Said HA (2005) Alleviation of NaCl-induced effects on Chlorella vulgaris and Chlorococcum humicola by riboflavin application. Int J Agric Biol 7:58–62

    CAS  Google Scholar 

  • Ahmed N, Shahab S (2010) Involvement of bacterial pyrroloquinoline in plant growth promotion: a novel discovery. Biotechnol Genet Eng 8:57–61

    CAS  Google Scholar 

  • Ahn I-P, Kim S, Lee Y-H (2005) Vitamin B1 functions as an activator of plant disease resistance. Plant Physiol 138:1505–1515

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alen’kina SA, Payusova OA, Nikitina VE (2006) Effect of Azospirillum lectins on the activities of wheat-root hydrolytic enzymes. Plant Soil 283:147–151

    Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    CAS  PubMed  Google Scholar 

  • Asensi-Fabado MA, Munné-Bosch S (2010) Vitamins in plants: occurrence, biosynthesis and antioxidant function. Trends Plant Sci 15:582–592

    CAS  PubMed  Google Scholar 

  • Aver’yanov AA, Lapikova VP, Nikolaev ON, Stepanov AI (2000) Active oxygen-associated control of rice blast disease by riboflavin and roseoflavin. Biochemistry-Moscow 65:1292–1298

    PubMed  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570

    CAS  PubMed  Google Scholar 

  • Barth C, Moeder W, Klessig DE, Conklin PL (2004) The timing of senescence and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant vitamin c-1. Plant Physiol 134:1784–1792

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bashan Y, de-Bashan LE (2005) Bacteria/plant growth-promotion. In: Hillel D (ed) Encyclopedia of soils in the environment. Elsevier, Oxford, pp 103–115

    Google Scholar 

  • Bashan Y, de-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv Agron 108:77–136

    CAS  Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228

    CAS  Google Scholar 

  • Bashan Y, Alcaraz-Melendez L, Toledo G (1992) Responses of soybean and cowpea root membranes to inoculation with Azospirillum brasilense. Symbiosis 13:217–228

    Google Scholar 

  • Bashan Y, Bustillos JJ, Leyva LA, Hernandez J-P, Bacilio M (2006) Increase in auxiliary photoprotective photosynthetic pigments in wheat seedlings induced by Azospirillum brasilense. Biol Fert Soils 42:279–285

    CAS  Google Scholar 

  • Bashan Y, Kamnev AA, de-Bashan LE (2013) Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biol Fert Soils 49:465–479

    CAS  Google Scholar 

  • Baya AM, Boethling RS, Ramos-Cormenzana A (1981) Vitamin production in relation to phosphate solubilization by soil bacteria. Soil Biol Biochem 13:527–531

    CAS  Google Scholar 

  • Begley TP, Downs DM, Ealick SE, McLafferty FW, Van Loon APGM, Taylor S, Campobasso N, Chiu H-J, Kinsland C, Reddick JJ, Xi J (1999) Thiamin biosynthesis in prokaryotes. Arch Microbiol 171:293–300

    CAS  PubMed  Google Scholar 

  • Belanger FC, Leustek T, Chu B, Kriz AL (1995) Evidence for the thiamine biosynthetic pathway in higher-plant plastids and its developmental regulation. Plant Mol Biol 29:809–821

    CAS  PubMed  Google Scholar 

  • Bereswill S, Hinkelmann S, Kist M, Sander A (1999) Molecular analysis of riboflavin synthesis genes in Bartonella henselae and use of the ribC gene for differentiation of Bartonella species by PCR. J Clin Microbiol 37:3159–3166

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bilski P, Li MY, Ehrenshaft M, Daub ME, Chignell CF (2000) Vitamin B6 (pyridoxine) and its derivates are efficient singlet oxygen quenchers and potential fungal antioxidants. Photochem Photobiol 71:129–134

    CAS  PubMed  Google Scholar 

  • Biville F, Turlin E, Gasser F (1989) Cloning and genetic analysis of six pyrroloquinoline quinone biosynthesis genes in Methylobacterium organophilum DSM 760. J Gen Microbiol 135:2917–2929

    CAS  Google Scholar 

  • Blume B, Nürnberger T, Nass N, Scheel D (2000) Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell 12:1425–1440

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boubakri H, Wahab MA, Chong J, Bertsch C, Mliki A, Soustre-Gacougnolle I (2012) Thiamine induced resistance to Plasmopara viticola in grapevine and elicited host-defense responses, including HR like-cell death. Plant Physiol Bioch 57:120–133

    CAS  Google Scholar 

  • Bremus C, Herrmann U, Bringer-Meyer S, Sahm H (2006) The use of microorganisms in L-ascorbic acid production. J Biotechnol 124:196–205

    CAS  PubMed  Google Scholar 

  • Brimecombe MJ, de Leij FAAM, Lynch JM (2007) Rhizodeposition and microbial populations. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface, 2nd edn. CRC Press, Boca Raton, pp 73–110

    Google Scholar 

  • Bunik VI, Fernie AR (2009) Metabolic control exert by the 2-oxoglutarate dehydrogenase reaction: a cross-kingdom comparison of the crossroad between energy production and nitrogen assimilation. Biochem J 422:405–421

    CAS  PubMed  Google Scholar 

  • Burgess CM, Smid EJ, van Sinderen D (2009) Bacterial vitamin B2, B11 and B12 overproduction: an overview. Int J Food Microbiol 133:1–7

    CAS  PubMed  Google Scholar 

  • Campbell GRO, Taga ME, Mistry K, Lloret J, Anderson PJ, Roth JR, Walker GC (2006) Sinorhizobium meliloti bluB is necessary for production of 5,6-dimethylbenzimidazole, the lower ligand of B12. Proc Natl Acad Sci U S A 103:4634–4639

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cassan F, Maiale S, Masciarelli O, Vidal A, Luna V, Ruiz O (2009) Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. Eur J Soil Biol 45:12–19

    CAS  Google Scholar 

  • Castellanos T, Ascencio F, Bashan Y (1998) Cell-surface lectins of Azospirillum spp. Curr Microbiol 36:241–244

    CAS  PubMed  Google Scholar 

  • Castro-Sowinski S, Burdman S, Matan O, Okon Y (2010) Natural functions of bacterial polyhydroxyalkanoates. In: Chen GQ (ed) Plastics from bacteria: natural functions and application. Microbiology monographs, vol. 14. Springer, Berlin, pp 39–61

    Google Scholar 

  • Cesco S, Mimmo T, Tonon G, Tomasi R, Pinton R, Terzano R, Neumann G, Weisskopf L, Renella G, Landi L, Nannipieri P (2012) Plant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. A review. Biol Fertil Soils 48:123–149

    CAS  Google Scholar 

  • Cha C, Gao P, Chen Y-C, Shaw PD, Farrand SK (1998) Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol Plant Microbe In 11:1119–1129

    CAS  Google Scholar 

  • Chaparro JM, Shelfin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 88:489–499

    Google Scholar 

  • Chen H, Xiong L (2005) Pyridoxine is required for post-embryonic root development and tolerance to osmotic and oxidative stresses. Plant J 44:396–408

    CAS  PubMed  Google Scholar 

  • Choi O, Kim J, Kim J-G, Jeong Y, Moon JS, Park CS, Hwang I (2008) Pyrroloquinoline quinone is a plant growth promotion factor produced by Pseudomonas fluorescens B16. Plant Physiol 146:657–668

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen MF, Lamattina L, Yamasaki H (2010) Nitric oxide signaling by plant-associated bacteria. In: Hayat S, Mori M, Pichtel J, Ahmad A (eds) Nitric oxide in plant physiology. Wiley-VCH, Weinheim, pp 161–172

    Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microb 71:4951–4959

    CAS  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    CAS  Google Scholar 

  • Conklin PL, Barth C (2004) Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environ 27:959–970

    CAS  Google Scholar 

  • Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90–93

    CAS  PubMed  Google Scholar 

  • Croft MT, Warren MJ, Smith AG (2006) Algae need their vitamin. Eukaryot Cell 5:1175–1183

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cronan JE, Littel KJ, Jackowski S (1982) Genetic and biochemical analyses of pantothenate biosynthesis in Escherichia coli and Salmonella typhimurium. J Bacteriol 149:916–922

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dahm H, Rózycki H, Strzelczyk E, Li CY (1993) Production of B-group vitamins by Azospirillum spp. grown in media of different pH at different temperatures. Zbl Mikrobiol 148:195–203

    CAS  Google Scholar 

  • de-Bashan LE, Bashan Y (2008) Joint immobilization of plant growth-promoting bacteria and green microalgae in alginate beads as an experimental model for studying plant-bacterium interactions. Appl Environ Microb 74:6797–6802

    CAS  Google Scholar 

  • de-Bashan LE, Antoun H, Bashan Y (2005) Cultivation factors and population size control uptake of nitrogen by the microalgae Chlorella vulgaris when interacting with the microalgae growth-promoting bacterium Azospirillum brasilense. FEMS Microbiol Ecol 54:197–203

    CAS  PubMed  Google Scholar 

  • de-Bashan LE, Hernandez JP, Bashan Y (2012) The potential contribution of plant growth-promoting bacteria to reduce environmental degradation—a comprehensive evaluation. Appl Soil Ecol 61:171–189

    Google Scholar 

  • Delwiche CC, Johnson CM, Reisenauer HM (1961) Influence of cobalt on nitrogen fixation by Medicago. Plant Physiol 36:73–78

    CAS  PubMed Central  PubMed  Google Scholar 

  • Depeint F, Bruce WR, Shangari N, Mehta R, O’Brien PJ (2006) Mitochondrial function and toxicity: role of the B vitamin family on mitochondrial energy metabolism. Chem-Biol Interact 163:94–112

    CAS  PubMed  Google Scholar 

  • Deryło M, Skorupska A (1993) Enhancement of symbiotic nitrogen fixation by vitamin-secreting fluorescent Pseudomonas. Plant Soil 154:211–217

    Google Scholar 

  • Dong H, Beer SV (2000) Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology 90:801–811

    CAS  PubMed  Google Scholar 

  • Dong H, Liu A, Wang Y, Liu B, Fan H, Liu G, Wang R, Chen J, Sun Y, Zhang L, Qian Y, Gao Z, Xu Q, Sun X, Sang C (1995) Control of brown spot by induced resistance in tobacco: preparation SRS2, its functions to control the disease and to improve qualitative and economic properties of the cured leaves. In: Dong H (ed) Induced resistance against diseases in plants. Science Press, Beijing, pp 422–427

    Google Scholar 

  • Drigo B, Kowalchuk GA, van Veen JA (2008) Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biol Fertil Soils 44:667–679

    Google Scholar 

  • Eichel J, González JC, Hotze M, Matthews RG, Shröder J (1995) Vitamin-B12-independient methionine synthase from a higher plant (Catharanthus roseus), molecular characterization, regulation, heterologous expression, and enzyme properties. Eur J Biochem 230:1053–1058

    CAS  PubMed  Google Scholar 

  • El-Essawy AA, El-Sayed MA, Mohamed YAH (1984) Production of cyanocobalamine by Azotobacter chroococcum. Zbl Mikrobiol 139:335–342

    CAS  Google Scholar 

  • Encarnación S, Dunn M, Willms K, Mora J (1995) Fermentative and aerobic metabolism in Rhizobium etli. J Bacteriol 177:3058–3066

    PubMed Central  PubMed  Google Scholar 

  • Entcheva P, Phillips DA, Streit WR (2002) Functional analysis of Sinorhizobium meliloti genes involved in biotin synthesis and transport. Appl Environ Microb 68:2843–2848

    CAS  Google Scholar 

  • Faure D, Vereecke D, Leveau JHJ (2009) Molecular communication in the rhizosphere. Plant Soil 321:279–303

    CAS  Google Scholar 

  • Frappier F, Marquet A (1981) On the biosynthesis of biotin in Achromobacter IVSW a reinvestigation. Biochem Bioph Res Co 103:1288–1293

    CAS  Google Scholar 

  • Gantner S, Schmid M, Dürr C, Schuhegger R, Steidle A, Hutzler P, Langebartels C, Eberl L, Hartmann A, Dazzo FB (2006) In situ quantitation of the spatial scale of calling distances and population density-independent N-acylhomoserine lactone-mediated communication by rhizobacteria colonized on plant roots. FEMS Microbiol Ecol 56:188–194

    CAS  PubMed  Google Scholar 

  • Ghosh S, Maiti TK, Basu PS (2008) Bioproduction of ascorbic acid in root nodule and root of the legume pulse Phaseolus mungo. Curr Microbiol 56:495–498

    CAS  PubMed  Google Scholar 

  • Gliese N, Khodaverdi V, Görisch H (2010) The PQQ biosynthetic operons and their transcriptional regulation in Pseudomonas aeruginosa. Arch Microbiol 192:1–14

    CAS  PubMed  Google Scholar 

  • Gómez F, Martínez-Toledo MV, Salmerón V, Rodelas B, González-López J (1999) Influence of the insecticides profenofos and diazinon on the microbial activities of Azospirillum brasilense. Chemosphere 39:945–957

    Google Scholar 

  • Gonzalez-Lopez J, Salmeron V, Moreno J, Ramos-Cormenzana A (1983) Amino acids and vitamins produced by Azotobacter vinelandii atcc 12837 in chemically-defined media and dialysed soil media. Soil Biol Biochem 15:711–713

    CAS  Google Scholar 

  • Goosen N, Horsman HPA, Huinen RGM, van de Putte P (1989) Acinetobacter calcoaceticus genes involved in biosynthesis of the coenzyme pyrrolo-quinoline-quinone: nucleotide sequence and expression in Escherichia coli K-12. J Bacteriol 171:447–455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goyer A (2010) Thiamine in plants: aspects of its metabolism and functions. Phytochemistry 71:1615–1624

    CAS  PubMed  Google Scholar 

  • Guillén-Navarro K, Encarnación S, Dunn MF (2005) Biotin biosynthesis, transport and utilization in rhizobia. FEMS Microbiol Lett 246:159–165

    PubMed  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

    CAS  PubMed  Google Scholar 

  • Hallmann J, Rodríguez-Kábana R, Kloepper JW (1999) Chitin-mediated changes in bacterial communities of the soil, rhizosphere and within roots of cotton in relation to nematode control. Soil Biol Biochem 31:551–560

    CAS  Google Scholar 

  • Hallsworth EG, Wilson SB, Greenwood EAM (1960) Copper and cobalt in nitrogen fixation. Nature 187:79–80

    CAS  PubMed  Google Scholar 

  • Havaux M, Ksas B, Szewczyk A, Rumeau D, Franck F, Caffarri S, Triantaphylidès C (2009) Vitamin B6 deficient plants display increased sensitivity to high light and photo-oxidative stress. BMC Plant Biol 9:1–22

    Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Google Scholar 

  • Heinz EB, Phillips DA, Streit WR (1999) BioS, a biotin-induced, stationary-phase, and possible LysR-type regulator in Sinorhizobium meliloti. Mol Plant Microbe In 12:803–812

    CAS  Google Scholar 

  • Hofmann K, Heinz EB, Charles TC, Hoppert M, Liebl W, Streit WR (2000) Sinorhizobium meliloti strain 1021 bioS and bdhA gene transcriptions are both affected by biotin available in defined medium. FEMS Microbiol Lett 182:41–44

    CAS  PubMed  Google Scholar 

  • Hümbelin M, Griesser V, Keller T, Schurter W, Haiker M, Hohmann H-P, Ritz H, Richter G, Bacher A, van Loon APGM (1999) GTP cyclohydrolase II and 3,4-dihydroxy-2-butanone-4-phosphate synthase are rate-limiting enzymes in riboflavin synthesis of an industrial Bacillus subtilis strain used for riboflavin production. J Ind Microbiol Biot 22:1–7

    Google Scholar 

  • Iguchi H, Yurimoto H, Sakai Y (2011) Stimulation of methanotrophic growth in cocultures by cobalamin excreted by rhizobia. App Environ Microb 77:8509–8515

    CAS  Google Scholar 

  • Isegawa Y, Nakano Y, Kitaoka S (1984) Conversion and distribution of cobalamin in Euglena gracilis z, with special reference to its location and probable function within chloroplasts. Plant Physiol 76:814–818

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jenkins AH, Schyns G, Potot S, Sun G, Begley TP (2007) A new thiamin salvage pathway. Nat Chem Biol 3:492–497

    CAS  PubMed  Google Scholar 

  • Juhas M, Eberl L, Tümmler B (2005) Quorum sensing: the power of cooperation in the world of Pseudomonas. Environ Microbiol 7:459–471

    CAS  PubMed  Google Scholar 

  • Jurgenson CT, Begley TP, Ealick SE (2009) The structural and biochemical foundations of thiamin biosynthesis. Annu Rev Biochem 78:569–603

    CAS  PubMed  Google Scholar 

  • Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4:179–183

    Google Scholar 

  • Kanu S, Matiru VN, Dakora FD (2007) Strain and species differences in rhizobial secretion of lumichrome and riboflavin, measured using thin-layer chromatography. Symbiosis 43:37–43

    CAS  Google Scholar 

  • Karunakaran R, Ebert K, Harvey S, Leonard ME, Ramachandran V, Poole PS (2006) Thiamine is synthesized by a salvage pathway in Rhizobium leguminosarum bv. viciae strain 3841. J Bacteriol 18:6661–6668

    Google Scholar 

  • Kasahara T, Kato T (2003) Nutritional biochemistry: a new redox-cofactor vitamin for mammals. Nature 422:832

    CAS  PubMed  Google Scholar 

  • Khan W, Prithiviraj B, Smith DL (2008) Nod factor [Nod Bj V (C18:1, MeFuc)] and lumichrome enhance photosynthesis and growth of corn and soybean. J Plant Physiol 165:1342–1351

    CAS  PubMed  Google Scholar 

  • Kim YC, Glick BR, Bashan Y, Ryu CM (2012) Enhancement of plant drought tolerance by microbes. In: Aroca R (ed) Plant responses to drought stress: from morphological to molecular features. Springer, Heidelberg, pp 383–413

    Google Scholar 

  • Kirkland JB (2007) Niacin. In: Zempleni J, Rucker RB, McCormick DB, Suttie JW (eds) Handbook of vitamins. Taylor & Francis Group, New York, pp 192–232

    Google Scholar 

  • Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P, Trifa Y, Pontier D, Larn E, Silva H (2000) Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci U S A 97:8849–8855

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kliewer M, Evans HJ (1963a) Cobamide coenzyme contents of soybean nodules and nitrogen fixing bacteria in relation to physiological conditions. Plant Physiol 38:99–104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kliewer M, Evans HJ (1963b) Identification of cobamide coenzyme in nodules of symbionts and isolation of the B12 coenzyme from Rhizobium meliloti. Plant Physiol 38:55–59

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kloepper JW, Ryu C-M (2006) Bacterial endophytes as elicitors of induced systemic resistance. In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes, soil biology, vol 9. Springer, Berlin, pp 33–52

    Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria in radish. Proceedings of the 4th International Conference on Plant Pathogenic Bacteria. Station de Pathologic Vegetal et Phytobacteriologic (ed), Angers, France. 2:879–882

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980a) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth M (1980b) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol 4:317–320

    CAS  Google Scholar 

  • Knowles JR (1989) The mechanism of biotin-dependent enzymes. Annu Rev Biochem 58:195–221

    CAS  PubMed  Google Scholar 

  • Koga J, Adachi T, Hidaka H (1992) Purification and characterization of indolepyruvate decarboxylase. A novel enzyme for indole-3-acetic acid biosynthesis in Enterobacter cloacae. J Biol Chem 267:15823–15828

    CAS  PubMed  Google Scholar 

  • Krampitz LO (1969) Catalytic functions of thiamin diphosphate. Annu Rev Biochem 38:213–240

    CAS  PubMed  Google Scholar 

  • Kurek E, Jaroszuk-Scisel J (2003) Rye (Secale cereale) growth promotion by Pseudomonas fluorescens and their interactions with Fusarium culmorum under various soil conditions. Biol Control 26:48–56

    Google Scholar 

  • Kyungseok P, Kloepper JW, Ryu C-M (2008) Rhizobacterial exopolysaccharide elicit induced resistance on cucumber. J Microbial Biotech 18:1095–1100

    Google Scholar 

  • LeClere S, Rampey RA, Bartel B (2004) IAR4, a gene required for auxin conjugate sensitivity in Arabidopsis encodes a pyruvate dehydrogenase E1α homolog. Plant Physiol 135:989–999

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee H-W, Pan J-G (1999) Screening for L-sorbose and L-sobosone dehydrogenase producing microbes for 2-keto-L-gulonic acid production. J Ind Microbiol Biot 23:106–111

    CAS  Google Scholar 

  • Lee CY, O’Kane DJ, Meighen EA (1994) Riboflavin synthesis genes are linked with the lux operon of Photobacterium phosphoreum. J Bacteriol 176:2100–2104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lim SH, Choi JS, Park EY (2001) Microbial production of riboflavin using riboflavin overproducers, Ashbya gossypii, Bacillus subtilis, and Candida famate: an overview. Biotechnol Bioproc E 6:75–88

    CAS  Google Scholar 

  • Liu F, Wei F, Wang L, Liu H, Zhu X, Liang Y (2010) Riboflavin activates defense responses in tobacco and induces resistance against Phytophthora parasitica and Ralstonia solanacearum. Physiol Mol Plant P 74:330–336

    CAS  Google Scholar 

  • Lowe RH, Evans HJ (1962) Cobalt requirement for the growth of rhizobia. J Bacteriol 83:210–211

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lowe RH, Evans HJ, Ahmed S (1960) The effect of cobalt on the growth of Rhizobium japonicum. Biochem Bioph Res Co 3:675–678

    CAS  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. A Van Leeuw J Microb 86:1–25

    CAS  Google Scholar 

  • Lugtenberg BJJ, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    CAS  PubMed  Google Scholar 

  • Mack M, van Loon APGM, Hohmann H-P (1998) Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of flavokinase/flavin adenide dinucleotide synthetase encoded by ribC. J Bacteriol 180:950–955

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mapson LW (1962) Photo-oxidation of ascorbic acid in leaves. Biochem J 85:360–369

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marek-Kozaczuk M, Skorupska A (2001) Production of B-group vitamins by plant growth-promoting Pseudomonas fluorescens strain 267 and the importance of vitamins in the colonization and nodulation of red clover. Biol Fert Soils 33:146–151

    CAS  Google Scholar 

  • Martens J-H, Barg H, Warren M, Jahn D (2002) Microbial production of vitamin B12. Appl Microbiol Biot 58:275–285

    CAS  Google Scholar 

  • Martinez-Toledo MV, Rodelas B, Salmeron V, Pozo C, Gonzalez-Lopez J (1996) Production of pantothenic acid and thiamine by Azotobacter vinelandii in a chemically defined medium and a dialysed soil medium. Biol Fert Soils 22:131–135

    CAS  Google Scholar 

  • Matamoros MA, Loscos J, Coronado MJ, Ramos J, Sato S, Testillano PS, Tabata S, Becana M (2006) Biosynthesis of ascorbic acid in legume root nodules. Plant Physiol 141:1068–1077

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matiru VN, Dakora FD (2005) Xylem transport and shoot accumulation of lumichrome, a newly recognized rhizobial signal, alters root respiration, stomatal conductance, leaf transpiration and photosynthetic rates in legumes and cereals. New Phytol 165:847–855

    CAS  PubMed  Google Scholar 

  • McBurney CH, Bollen WB, Williams RJ (1935) Pantothenic acid and the nodule bacteria-legume symbiosis. Proc Natl Acad Sci U S A 21:301–304

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meulenberg JJM, Sellink E, Postma PW (1992) Nucleotide sequence and structure of the Klebsiella pneumonia pqq operon. Mol Gen Genet 232:284–294

    CAS  PubMed  Google Scholar 

  • Mittenhuber G (2001) Phylogenetic analyses and comparative genomics of vitamin B6 (pyridoxine) and pyridoxal phosphate biosynthesis pathways. J Mol Microb Biotech 3:1–20

    CAS  Google Scholar 

  • Miyamoto E, Watanabe F, Takenaka H, Nakano Y (2002) Uptake and physiological function of vitamin B12 in a photosynthetic unicellular coccolithophorid alga, Pleurochrysis carterae. Biosci Biotech Bioch 66:195–198

    CAS  Google Scholar 

  • Mooney S, Leuendorf J-K, Hendrickson C, Hellmann H (2009) Vitamin B6: a long known compound of surprising complexity. Molecules 14:329–351

    CAS  PubMed  Google Scholar 

  • Moore SJ, Warren MJ (2012) The anaerobic biosynthesis of vitamin B12. Biochem Soc T 40:581–586

    CAS  Google Scholar 

  • Mukherjee T, Hanes J, Tews I, Ealick SE, Begley TP (2011) Pyridoxal phosphate: biosynthesis and catabolism. BBA-Proteins Proteom 1814:1585–1596

    CAS  Google Scholar 

  • Murcia R, Rodelas B, Salmerón V, Martínez-Toledo MV, González-López J (1997) Effect of the herbicide simazine on vitamin production by Azotobacter chroococcum and Azotobacter vinelandii. Appl Soil Ecol 6:187–193

    Google Scholar 

  • Noctor G, Queval G, Gakière B (2006) NAD(P) synthesis and pyridine nucleotide cycling in plants and their potential importance in stress conditions. J Exp Bot 57:1603–1620

    CAS  PubMed  Google Scholar 

  • Osmani AH, May GS, Osmani SA (1999) The extremely conserved pyroA gene of Aspergillus nidulans is required for pyridoxine synthesis and is required indirectly for resistance to photosensitizers. J Biol Chem 274:23565–23569

    CAS  PubMed  Google Scholar 

  • Paré PW, Farag MA, Krishnamachari V, Zhang H, Ryu C-M, Kloepper JW (2005) Elicitors and priming agents initiate plant defense responses. Photosynth Res 85:149–159

    PubMed  Google Scholar 

  • Park K, Paul D, Kim E, Kloepper JW (2008) Hyaluronic acid of Streptococcus sp. as a potent elicitor for induction of systemic resistance against plant diseases. World J Microbiol Biotechnol 24:1153–1158

    CAS  Google Scholar 

  • Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G, Foyer CH (2003) Leaf vitamin C contents modulate plant defense transcripts and regulated genes that control development through hormone signaling. Plant Cell 15:939–951

    CAS  PubMed Central  PubMed  Google Scholar 

  • Phillips DA, Joseph CM, Yang G-P, Martínez-Romero E, Sanborn JR, Volpin H (1999) Identification of lumichrome as a Sinorhizobium enhancer of alfalfa root respiration and shoot growth. Proc Natl Acad Sci U S A 96:12275–12280

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ping L, Boland W (2004) Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci 9:263–266

    CAS  PubMed  Google Scholar 

  • Poston JM (1978) Coenzyme B12-dependent enzymes in potato:leucine 2, 3-aminomutase and methylmalonyl-CoA mutase. Phytochemistry 17:401–402

    CAS  Google Scholar 

  • Poston JM, Hemmings BA (1979) Cobalamins and cobalamin-dependent enzymes in Candida utilis. J Bacteriol 140:1013–1016

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pridham TG (1952) Microbial synthesis of riboflavin. Econ Bot 6:185–205

    CAS  Google Scholar 

  • Primerano DA, Burns RO (1983) Role of acetohydroxy acid isomeroreductase in biosynthesis of pantothenic acid in Salmonella typhimurium. J Bacteriol 153:259–269

    CAS  PubMed Central  PubMed  Google Scholar 

  • Puehringer S, Metlilzky M, Schwarzenbacher R (2008) The pyrroquinoline quinine biosynthesis pathway revisited: a structural approach. BMC Biochem 9:8. doi:10.1186/1471-2091-9-8

    PubMed Central  PubMed  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. A Van Leeuw J Microb 81:537–547

    CAS  Google Scholar 

  • Rajamani S, Bauer WD, Robinson JB, Farrow JM III, Pesci EC, Teplitski M, Gao M, Sayre RT, Phillips DA (2008) The vitamin riboflavin and its derivate lumichrome activate the LasR bacterial quorum-sensing receptor. Mol Plant Microbe In 21:1184–1192

    CAS  Google Scholar 

  • Ramamoorthi R, Lidstrom ME (1995) Transcriptional analysis of pqqD and study of the regulation of pyrroloquinoline quinone biosynthesis in Methylobacterium extorquens AM1. J Bacteriol 177:206–211

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rao Y, Sureshkumar GK (2000) Direct biosynthesis of ascorbic acid from glucose by Xanthomonas campestris through induced free-radicals. Biotechnol Lett 22:407–411

    CAS  Google Scholar 

  • Raschle T, Amrhein N, Fitzpatrick TB (2005) On the two components of pyridoxal 5′-phosphate synthase from Bacillus subtilis. J Biol Chem 280:32291–32300

    CAS  PubMed  Google Scholar 

  • Raux E, Leech HK, Beck R, Schubert HL, Santander PJ, Roessner CA, Scott AI, Martens JH, Jahn D, Thermes C, Rambach A, Warren MJ (2003) Identification and functional analysis of enzymes required for precorrin-2 dehydrogenation and metal ion insertion in the biosynthesis of sirohem and cobalamin in Bacillus megaterium. Biochem J 370:505–516

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reddy MS, Desai S, Sayyed R, Krishna-Rao V, Sarma YR, Chenchu-Reddy B, Reddy KRK, Podile AR, Kloepper JW (2010) Plant growth-promotion by rhizobacteria for sustainable agriculture. Scientific Publishers, Jodhpur

    Google Scholar 

  • Reihl P, Stolz J (2005) The monocarboxylate transporter homolog Mch5p catalyzes riboflavin (vitamin B2) uptake in Saccharomyces cerevisiae. J Biol Chem 280:39809–39817

    CAS  PubMed  Google Scholar 

  • Revillas JJ, Rodelas B, Pozo C, Martínez-Toledo MV, González-López J (2000) Production of B-group vitamins by two Azotobacter strains with phenolic compounds as sole carbon source under diazotrophic and adiazotrophic conditions. J Appl Microbiol 89:486–493

    CAS  PubMed  Google Scholar 

  • Rodelas B, Salmerón V, Martínez-Toledo MV, González-López J (1993) Production of vitamins by Azospirillum brasilense in chemically-defined media. Plant Soil 153:97–101

    CAS  Google Scholar 

  • Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS (2003) Comparative genomics of the vitamin B12 metabolism and regulation in prokaryotes. J Biol Chem 278:41148–41159

    CAS  PubMed  Google Scholar 

  • Rodríguez H, Gonzalez T, Selman G (2000) Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains. J Biotechnol 84:155–161

    Google Scholar 

  • Roessner CA, Huang K, Warren MJ, Raux E, Scott AI (2002) Isolation and characterization of 14 additional genes specifying the anaerobic biosynthesis of cobalamin (vitamin B12) in Propionibacterium freudenreichii (P. shermanii). Microbiology 148:1845–1853

    CAS  PubMed  Google Scholar 

  • Roje S (2007) Vitamin B biosynthesis in plants. Phytochemistry 68:1904–1921

    CAS  PubMed  Google Scholar 

  • Rucker R, Storms D, Sheets A, Tchaparian E, Fascetti A (2005) Biochemistry: is pyrroloquinoline quinine a vitamin? Nature 433:E10–E11

    CAS  PubMed  Google Scholar 

  • Rucker R, Chowanadisai W, Nakano M (2009) Potential physiological importance of pyrroloquinoline quinine. Altern Med Rev 14:268–277

    PubMed  Google Scholar 

  • Rudd JJ, Franklin-Tong VE (1999) Calcium signaling in plants. Cell Mol Life Sci 55:214–232

    CAS  PubMed  Google Scholar 

  • Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wei H-X, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ryu C-M, Murphy JF, Reddy MS, Kloepper JW (2007) A two-strain mixture of rhizobacteria elicits induction of systemic resistance against Pseudomonas syringae and Cucumber mosaic virus coupled to promotion of plant growth on Arabidopsis thaliana. J Microbiol Biotechnol 17:280–286

    CAS  PubMed  Google Scholar 

  • Sakurai N, Imai Y, Masuda M, Komatsubara S, Tosa T (1993) Molecular breeding of a biotin-hyperproducing Serratia marcescens strain. App Environ Microb 59:3225–3232

    CAS  Google Scholar 

  • Schenk G, Duggleby RG, Nixon PF (1998) Properties and functions of the thiamin diphosphate dependent enzyme transketolase. Int J Biochem Cell B 30:1297–1318

    CAS  Google Scholar 

  • Schippers B, Bakker AW, Bakker PAHM, Van Peer R (1990) Beneficial and deleterious effects of HCN-producing pseudomonads on rhizosphere interactions. Plant Soil 129:75–83

    CAS  Google Scholar 

  • Schnider U, Keel C, Voisard C, Défago G, Haas D (1995) Tn5-directed cloning of pqq genes from Pseudomonas fluorescens CHA0: mutational inactivation of the genes results in overproduction of the antibiotic pyoluteorin. App Environ Microb 61:3856–3864

    CAS  Google Scholar 

  • Schyns G, Potot S, Geng Y, Barbosa TM, Henriques A, Perkins JB (2005) Isolation and characterization of new thiamine-deregulated mutants of Bacillus subtilis. J Bacteriol 187:8127–8136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shaukat-Ahmed EHJ (1961) The essentiality of cobalt for soybean plants grown under symbiotic conditions. Proc Natl Acad Sci U S A 47:24–36

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shi H, Xiong L, Stevenson B, Lu T, Zhu J-K (2002) The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for vitamin B6 in plant salt tolerance. Plant Cell 14:575–588

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sierra S, Rodelas B, Martínez-Toledo MV, Pozo C, González-López J (1999) Production of B-group vitamins by two Rhizobium strains in chemically defined media. J Appl Microbiol 86:851–858

    CAS  Google Scholar 

  • Sims GK, O’Loughlin EJ (1992) Riboflavin production during growth of Micrococcus luteus on pyridine. Appl Environ Microb 58:3423–3425

    CAS  Google Scholar 

  • Smidt CR, Steinberg FM, Rucker RB (1991) Physiologic importance of pyrroloquinoline quinone. P Soc Exp Biol Med 197:19–26

    CAS  Google Scholar 

  • Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol 35:291–314

    CAS  Google Scholar 

  • Smith AG, Croft MT, Moulin M, Webb ME (2007) Plants need their vitamins too. Plant Biology 10:266–275

    CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism–plant signaling. FEMS Microbiol Rev 31:425–448

    CAS  PubMed  Google Scholar 

  • Stahmann K-P, Revuelta JL, Seulberger H (2000) Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biot 53:509–516

    CAS  Google Scholar 

  • Streit WR, Entcheva P (2003) Biotin in microbes, the genes involved in its biosynthesis, its biochemical role and perspectives for biotechnological production. Appl Microbiol Biot 61:21–31

    CAS  Google Scholar 

  • Streit WR, Phillips DA (1997) A biotin-regulated locus, bioS, in a possible survival operon of Rhizobium meliloti. Mol Plant Microbe In 10:933–937

    CAS  Google Scholar 

  • Streit WR, Joseph CM, Phillips DA (1996) Biotin and other water-soluble vitamins are key growth factors for alfalfa root colonization by Rhizobium meliloti 1021. Mol Plant Microbe In 9:330–338

    CAS  Google Scholar 

  • Sullivan JT, Brown SD, Yocum RR, Ronson CW (2001) The bio operon on the acquired symbiosis island of Mesorhizobium sp. strain R7A includes a novel gene in pimeloyl-CoA synthesis. Microbiology 147:1315–1322

    CAS  PubMed  Google Scholar 

  • Survase SA, Bajaj IB, Singhal RS (2006) Biotechnological production of vitamins. Food Technol Biotech 44:381–396

    CAS  Google Scholar 

  • Taheri P, Tarighi S (2010) Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway. J Plant Physiol 167:201–208

    CAS  PubMed  Google Scholar 

  • Tal S, Okon Y (1985) Production of the reserve material poly-β-hydroxybutyrate and its function in Azospirillum brasilense Cd. Can J Microbiol 31:608–613

    CAS  Google Scholar 

  • Tazoe M, Ichikawa K, Hoshino T (1999) Production of vitamin B6 in Rhizobium. Biosci Biotech Bioch 63:1378–1382

    CAS  Google Scholar 

  • Tazoe M, Ichikawa K, Hosino T (2000) Biosynthesis of vitamin B6 in Rhizobium. J Biol Chem 275:11300–11305

    CAS  PubMed  Google Scholar 

  • Tazoe M, Ichikawa K, Hoshino T (2005) Purification and characterization of pyridoxine 5′-phosphate phosphatase from Sinorhizobium meliloti. Biosci Biotech Bioch 69:2277–2284

    CAS  Google Scholar 

  • Van Schie BJ, De Mooy OH, Linton JD, Van Dijken JP, Kuenen JG (1987) PQQ-dependent production of gluconic acid by Acinetobacter, Agrobacterium and Rhizobium species. J Gen Microbiol 133:867–875

    Google Scholar 

  • Velterop JS, Sellink E, Meulenberg JJM, David S, Bulder I, Postma PW (1995) Synthesis of pyrroloquinoline quinone in vivo and in vitro and detection of an intermediate in the biosynthetic pathway. J Bacteriol 1995:5088–5098

    Google Scholar 

  • Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS (2002) Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. Nucleic Acids Res 30:3141–3151

    CAS  PubMed Central  PubMed  Google Scholar 

  • Voisard C, Keel C, Haas D, Défago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    CAS  PubMed Central  PubMed  Google Scholar 

  • Volpin H, Phillips DA (1998) Respiratory elicitors from Rhizobium meliloti affect intact alfalfa roots. Plant Physiol 116:777–783

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang S, Tzeng DD (1998) Methionine-riboflavin mixtures with surfactants and metal ions reduce powdery mildew infection in strawberry plants. J Am Soc Hortic Sci 123:987–991

    CAS  Google Scholar 

  • Wang J, Stolowich NJ, Santander PJ, Park JH, Scott AI (1996) Biosynthesis of vitamin B12: concerning the identity of the two-carbon fragment eliminated during anaerobic formation of cobyrinic acid. Proc Natl Acad Sci U S A 93:14320–14322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang S-D, Zhu F, Yuan S, Yang H, Xu F, Shang J, Xu M-Y, Jia S-D, Zhang Z-W, Wang J-H, Xi D-H, Lin H-H (2011) The roles of ascorbic acid and glutathione in symptom alleviation to SA-deficient plants infected with RNA viruses. Planta 234:171–181

    CAS  PubMed  Google Scholar 

  • White WH, Gunyuzlu PL, Toyn JH (2001) Saccharomyces cerevisiae is capable of de novo pantothenic acid biosynthesis involving a novel pathway of β-alanine production from spermine. J Biol Chem 276:10794–10800

    CAS  PubMed  Google Scholar 

  • Yang J, Kloepper JW, Ryu C-M (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    CAS  PubMed  Google Scholar 

  • Zhang Y, Taylor SV, Chiu H-J, Begley TP (1997) Characterization of the Bacillus subtilis thiC operon involved in thiamine biosynthesis. J Bacteriol 179:3030–3035

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang S, Reddy MS, Kloepper JW (2004) Tobacco growth enhancement and blue mold disease protection by rhizobacteria: relationship between plant growth promotion and systemic disease protection by PGPR strain 90-166. Plant Soil 262:277–288

    CAS  Google Scholar 

  • Zhang SJ, Yang X, Sun MW, Sun F, Deng S, Dong HS (2009) Riboflavin-induced priming for pathogen defense in Arabidopsis thaliana. J Integr Plant Biol 51:167–174

    PubMed  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ira Fogel for English and editorial improvements. This review was funded by Consejo Nacional de Ciencia y Tecnología of Mexico (CONACYT Basic Science-2009, contract 130656, and CONACYT Basic Science-2011, contract 164548). Time for writing was supported by The Bashan Foundation, USA. O.A.P. was supported by a graduate fellowship from CONACYT (contract #294625) and periodic small grants from the Bashan Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luz E. de-Bashan.

Additional information

Dedication

This review is dedicated to the memory of the Israeli soil microbiologist Prof. Yigal Henis (1926–2010) of the Faculty of Agriculture, The Hebrew University of Jerusalem in Rehovot, Israel, one of the pioneers of phytobacteriological studies in Israel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palacios, O.A., Bashan, Y. & de-Bashan, L.E. Proven and potential involvement of vitamins in interactions of plants with plant growth-promoting bacteria—an overview. Biol Fertil Soils 50, 415–432 (2014). https://doi.org/10.1007/s00374-013-0894-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-013-0894-3

Keywords

Navigation