Skip to main content
Log in

Wound healing reduces stress-induced immune changes: evidence for immune prioritization in the side-blotched lizard

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Immune system function is affected by a variety of exogenous and endogenous stressors. Most studies have focused on the effect of stressors on immune function, but not necessarily on trade-offs within the immune system and interactions with energy-mobilizing hormones. In this study, we examined how bactericidal ability and corticosterone interacted by applying acute restraint stress in a non-model organism, the side-blotched lizard (Uta stansburiana), 10 days after receiving a cutaneous wound. We found a decrease in bactericidal ability in wounded animals after restraint stress. However, the percentage healed during the first 7 days was positively correlated with bactericidal ability 10 days after wounding. In addition, the magnitude of change in corticosterone concentration during the acute stress was positively correlated with the percentage of wound healing during the first 3 days. These two relationships may demonstrate a “faster is better” strategy. If energy is invested heavily in the initial wound healing stages, the individual may be able to mount a more effective immune and stress response earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Angelier F, Wingfield JC (2013) Importance of the glucocorticoid stress response in a changing world: theory, hypotheses and perspectives. Gen Comp Endocrinol 190:118–128. doi:10.1016/j.ygcen.2013.05.022

    Article  CAS  PubMed  Google Scholar 

  • Bonneaud C, Mazuc J, Gonzalez G, Haussy C, Chastel O, Faivre B, Sorci G (2003) Assessing the cost of mounting an immune response. Am Nat 161(3):367–379. doi:10.1086/346134

    Article  PubMed  Google Scholar 

  • Breuner CW, Patterson SH, Hahn TP (2008) In search of relationships between the acute adrenocortical response and fitness. Gen Comp Endocrinol 157(3):288–295. doi:10.1016/j.ygcen.2008.05.017

    Article  CAS  PubMed  Google Scholar 

  • Breuner CW, Delehanty B, Boonstra R (2013) Evaluating stress in natural populations of vertebrates: total CORT is not good enough. Funct Ecol 27(1):24–36. doi:10.1111/1365-2435.12016

    Article  Google Scholar 

  • Brooks KC, Mateo JM (2013) Chronically raised glucocorticoids reduce innate immune function in Belding’s ground squirrels (Urocitellus beldingi) after an immune challenge. Gen Comp Endocrinol 193:149–157. doi:10.1016/j.ygcen.2013.07.019

    Article  CAS  PubMed  Google Scholar 

  • Christian LM, Graham JE, Padgett DA, Glaser R, Kiecolt-Glaser JK (2007) Stress and wound healing. NeuroImmunoModulation 13(5–6):337–346

    PubMed Central  Google Scholar 

  • Demas GE, Zysling DA, Beechler BR, Muehlenbein MP, French SS (2011) Beyond phytohaemagglutinin: assessing vertebrate immune function across ecological contexts. J Anim Ecol 80(4):710–730. doi:10.1111/j.1365-2656.2011.01813.x

    Article  PubMed  Google Scholar 

  • Dhabhar FS (2009a) Enhancing versus suppressive effects of stress on immune function: implications for immunoprotection and immunopathology. NeuroImmunoModulation 16(5):300–317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dhabhar FS (2009b) A hassle a day may keep the pathogens away: the fight-or-flight stress response and the augmentation of immune function. Integr Comp Biol 49(3):215–236. doi:10.1093/icb/icp045

    Article  CAS  PubMed  Google Scholar 

  • Dhabhar FS, McEwen BS (1997) Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking. Brain Behav Immun 11(4):286–306

    Article  CAS  PubMed  Google Scholar 

  • Dhabhar FS, Miller AH, McEwen BS, Spencer RL (1995) Effects of stress on immune cell distribution—dynamics and hormonal mechanisms. J Immunol 154(10):5511–5527

    CAS  PubMed  Google Scholar 

  • Dhabhar FS, Malarkey WB, Neri E, McEwen BS (2012) Stress-induced redistribution of immune cells—from barracks to boulevards to battlefields: a tale of three hormones. Psychoneuroendocrinology 37(9):1345–1368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dobbs CM, Feng N, Beck FM, Sheridan JF (1996) Neuroendocrine regulation of cytokine production during experimental influenza viral infection: effects of restraint stress-induced elevation in endogenous corticosterone. J Immunol 157(5):1870–1877

    CAS  PubMed  Google Scholar 

  • Ebrecht M, Hextall J, Kirtley L-G, Taylor A, Dyson M, Weinman J (2004) Perceived stress and cortisol levels predict speed of wound healing in healthy male adults. Psychoneuroendocrinology 29(6):798–809. doi:10.1016/S0306-4530(03)00144-6

    Article  CAS  PubMed  Google Scholar 

  • French SS, Moore MC (2008) Immune function varies with reproductive stage and context in female and male tree lizards, Urosaurus ornatus. Gen Comp Endocrinol 155(1):148–156

    Article  CAS  PubMed  Google Scholar 

  • French SS, Neuman-Lee LA (2012) Improved ex vivo method for microbiocidal activity across vertebrate species. Biol Open 1(5):482–487

    Article  PubMed Central  PubMed  Google Scholar 

  • French SS, Matt KS, Moore MC (2006) The effects of stress on wound healing in male tree lizards (Urosaurus ornatus). Gen Comp Endocrinol 145(2):128–132

    Article  CAS  PubMed  Google Scholar 

  • French SS, DeNardo DF, Moore MC (2007a) Trade-offs between the reproductive and immune systems: facultative responses to resources or obligate responses to reproduction? Am Nat 170(1):79–89

    Article  PubMed  Google Scholar 

  • French SS, McLemore R, Vernon B, Johnston GIH, Moore MC (2007b) Corticosterone modulation of reproductive and immune systems trade-offs in female tree lizards: long-term corticosterone manipulations via injectable gelling material. J Exp Biol 210(16):2859–2865

    Article  CAS  PubMed  Google Scholar 

  • French S, Fokidis H, Moore M (2008) Variation in stress and innate immunity in the tree lizard (Urosaurus ornatus) across an urban–rural gradient. J Comp Physiol B: Biochem Syst Environ Physiol 178(8):997–1005

    Article  Google Scholar 

  • French SS, DeNardo DF, Greives TJ, Strand CR, Demas GE (2010) Human disturbance alters endocrine and immune responses in the Galapagos marine iguana (Amblyrhynchus cristatus). Horm Behav 58(5):792–799. doi:10.1016/j.yhbeh.2010.08.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hasselgren P-O (1999) Glucocorticoids and muscle catabolism. Curr Opin Clin Nutr Metab Care 2(3):201–205

    Article  CAS  PubMed  Google Scholar 

  • Hawes AS, Richardson RP, Antonacci AC, Calvano SE (1995) Chronic pathophysiologic elevation of corticosterone after thermal injury or thermal injury and burn wound infection adversely affects body mass, lymphocyte numbers, and outcome. J Burn Care Res 16(1):1–15

    Article  CAS  Google Scholar 

  • Hopkins WA, DuRant SE (2011) Innate immunity and stress physiology of eastern hellbenders (Cryptobranchus alleganiensis) from two stream reaches with differing habitat quality. Gen Comp Endocrinol 174(2):107–115

    Article  CAS  PubMed  Google Scholar 

  • Hübner G, Brauchle M, Smola H, Madlener M, Fässler R, Werner S (1996) Differential regulation of pro-inflammatory cytokines during wound healing in normal and glucocorticoid-treated mice. Cytokine 8(7):548–556. doi:10.1006/cyto.1996.0074

    Article  PubMed  Google Scholar 

  • Janeway CJ, Travers P, Walport M, Shlomchik M (2001) Immunobiology: the immune system in health and disease, 5th edn. Garland Science, New York

    Google Scholar 

  • Lochmiller RL, Deerenberg C (2000) Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88(1):87–98. doi:10.1034/j.1600-0706.2000.880110.x

    Article  Google Scholar 

  • Lucas LD, French SS (2012) Stress-induced tradeoffs in a free-living lizard across a variable landscape: consequences for individuals and populations. PLoS ONE 7(11):e49895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maderson PFA, Roth SI (1972) A histological study of the early stages of cutaneous wound healing in lizards in in vivo and in vitro. J Exp Zool 180(2):175–185. doi:10.1002/jez.1401800205

    Article  CAS  PubMed  Google Scholar 

  • Marra PP, Holberton RL (1998) Corticosterone levels as indicators of habitat quality: effects of habitat segregation in a migratory bird during the non-breeding season. Oecologia 116(1–2):284–292. doi:10.1007/s004420050590

    Article  Google Scholar 

  • Martin P (1997) Wound healing—aiming for perfect skin regeneration. Science 276(5309):75–81

    Article  CAS  PubMed  Google Scholar 

  • Matson KD, Cohen AA, Klasing KC, Ricklefs RE, Scheuerlein A (2006) No simple answers for ecological immunology: relationships among immune indices at the individual level break down at the species level in waterfowl. Proc R Soc B: Biol Sci 273(1588):815–822

    Article  Google Scholar 

  • McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87(3):873–904. doi:10.1152/physrev.00041.2006

    Article  PubMed  Google Scholar 

  • Moore MC (1986) Elevated testosterone levels during nonbreeding-season territoriality in a fall-breeding lizard, Sceloporus jarrovi. J Comp Physiol A: Neuroethol Sens Neural Behav Physiol 158(2):159–163

    Article  CAS  Google Scholar 

  • Moore IT, Jessop TS (2003) Stress, reproduction, and adrenocortical modulation in amphibians and reptiles. Horm Behav 43(1):39–47

    Article  CAS  PubMed  Google Scholar 

  • Moore I, Greene M, Lerner D, Asher C, Krohmer R, Hess D, Whittier J, Mason R (2005) Physiological evidence for reproductive suppression in the introduced population of brown tree snakes (Boiga irregularis) on Guam. Biol Conserv 121(1):91–98

    Article  Google Scholar 

  • Padgett DA, Marucha PT, Sheridan JF (1998) Restraint stress slows cutaneous wound healing in mice. Brain Behav Immun 12(1):64–73. doi:10.1006/brbi.1997.0512

    Article  CAS  PubMed  Google Scholar 

  • Parker WS, Pianka ER (1975) Comparative ecology of populations of the lizard Uta stansburiana. Copeia 1975(4):615–632

  • Rojas I-G, Padgett DA, Sheridan JF, Marucha PT (2002) Stress-induced susceptibility to bacterial infection during cutaneous wound healing. Brain Behav Immun 16(1):74–84. doi:10.1006/brbi.2000.0619

    Article  PubMed  Google Scholar 

  • Romero LM (2004) Physiological stress in ecology: lessons from biomedical research. Trends Ecol Evol 19(5):249–255. doi:10.1016/j.tree.2004.03.008

    Article  PubMed  Google Scholar 

  • Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21(1):55–89

    CAS  PubMed  Google Scholar 

  • Selye H (1946) The general adaptation syndrome and the diseases of adaptation. J Clin Endocrinol 6(2):117–230

    Article  CAS  Google Scholar 

  • Smith DA, Barker IK (1988) Healing of cutaneous wounds in the common garter snake (Thamnophis sirtalis). Can J Vet Res 52(1):111

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sorrells SF, Sapolsky RM (2007) An inflammatory review of glucocorticoid actions in the CNS. Brain Behav Immun 21(3):259–272. doi:10.1016/j.bbi.2006.11.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tinkle DW (1967) The life and demography of the side-blotched lizard, Uta stansburiana. Miscellaneous Publications, University of Michigan Museum of Zoology 132:1–182

  • Tucunduva M, Borelli P, Silva JRMC (2001) Experimental study of induced inflammation in the Brazilian Boa (Boa constrictor constrictor). J Comp Pathol 125(2–3):174–181. doi:10.1053/jcpa.2001.0500

    Article  CAS  PubMed  Google Scholar 

  • Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83(3):835–870

    CAS  PubMed  Google Scholar 

  • Wingfield JC (2005) The concept of allostasis: coping with a capricious environment. J Mammal 86(2):248–254

    Article  Google Scholar 

  • Wingfield JC, Romero LM (2011) Adrenocortical responses to stress and their modulation in free-living vertebrates. In: Comprehensive physiology. Handbook of physiology, the endocrine system, coping with the environment: neural and endocrine mechanism. American Physiological Society, pp 211–234

  • Zimmerman LM, Vogel LA, Bowden RM (2010) Understanding the vertebrate immune system: insights from the reptilian perspective. J Exp Biol 213(5):661–671. doi:10.1242/jeb.038315

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank L. D. Lucas for running the radioimmunoassays and A. R. Spence for analyzing the wound healing images. Additional thanks to G. D. Smith, G. R. Hopkins, A. M. Durso, E. D. Brodie, Jr., and four anonymous reviewers for providing critical comments to an earlier draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorin A. Neuman-Lee.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neuman-Lee, L.A., French, S.S. Wound healing reduces stress-induced immune changes: evidence for immune prioritization in the side-blotched lizard. J Comp Physiol B 184, 623–629 (2014). https://doi.org/10.1007/s00360-014-0826-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-014-0826-z

Keywords

Navigation