Skip to main content
Log in

Endocrine mechanisms of seasonal adaptation in small mammals: from early results to present understanding

  • Review
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Seasonal adaptation is widespread among mammals of temperate and polar latitudes. The changes in physiology, morphology and behaviour are controlled by the photoneuroendocrine system that, as a first step, translates day lengths into a hormonal signal (melatonin). Decoding of the humoral melatonin signal, i.e. responses on the cellular level to slight alterations in signal duration, represents the prerequisite for appropriate timing of winter acclimatization in photoperiodic animals. Corresponding to the diversity of affected traits, several hormone systems are involved in the regulation downstream of the neural integration of photoperiodic time measurement. Results from recent studies provide new insights into seasonal control of reproduction and energy balance. Most intriguingly, the availability of thyroid hormone within hypothalamic key regions, which is a crucial determinant of seasonal transitions, appears to be regulated by hormone secretion from the pars tuberalis of the pituitary gland. This proposed neuroendocrine pathway contradicts the common view of the pituitary as a gland that acts downstream of the hypothalamus. In the present overview of (neuro)endocrine mechanisms underlying seasonal acclimatization, we are focusing on the dwarf hamster Phodopus sungorus (long-day breeder) that is known for large amplitudes in seasonal changes. However, important findings in other mammalian species such as Syrian hamsters and sheep (short-day breeder) are considered as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahima RS, Kelly J, Elmquist JK, Flier JS (1999) Distinct physiologic and neuronal responses to decreased leptin and mild hyperleptinemia. Endocrinology 140:4923–4931

    Google Scholar 

  • Al-Khateeb A, Johnson E (1971) Seasonal changes of pelage in the vole (Microtus agrestis). I. Correlation with changes in the endocrine glands. Gen Comp Endocrinol 16:217–228

    Article  PubMed  CAS  Google Scholar 

  • Anderson GM, Connors JM, Hardy SL, Valent M, Goodman RL (2002) Thyroid hormones mediate steroid-independent seasonal changes in luteinizing hormone pulsatility in the ewe. Biol Reprod 66:701–706

    Article  PubMed  CAS  Google Scholar 

  • Anderson GM, Hardy SL, Valent M, Billings HJ, Connors JM, Goodman RL (2003) Evidence that thyroid hormones act in the ventromedial preoptic area and the premammillary region of the brain to allow the termination of the breeding season in the ewe. Endocrinology 144:2892–2901

    Article  PubMed  CAS  Google Scholar 

  • Ansel L, Bolborea M, Bentsen AH, Klosen P, Mikkelsen JD, Simonneaux V (2010) Differential regulation of kiss1 expression by melatonin and gonadal hormones in male and female Syrian hamsters. J Biol Rhythms 25:81–91

    Article  PubMed  CAS  Google Scholar 

  • Arendt J, Symons AM, Laud CA, Pryde SJ (1983) Melatonin can induce early onset of the breeding season in ewes. J Endocrinol 97:395–400

    Article  PubMed  CAS  Google Scholar 

  • Atcha Z, Cagampang FR, Stirland JA, Morris ID, Brooks AN, Ebling FJ, Klingenspor M, Loudon AS (2000) Leptin acts on metabolism in a photoperiod-dependent manner, but has no effect on reproductive function in the seasonally breeding Siberian hamster (Phodopus sungorus). Endocrinology 141:4128–4135

    Article  PubMed  CAS  Google Scholar 

  • Axelrod J (1974) The pineal gland: a neurochemical transducer. Science 184:1341–1348

    Article  PubMed  CAS  Google Scholar 

  • Badura LL, Goldman BD (1992) Prolactin-dependent seasonal changes in pelage: role of the pineal gland and dopamine. J Exp Zool 261:27–33

    Article  PubMed  CAS  Google Scholar 

  • Bairlein F (2002) How to get fat: nutritional mechanisms of seasonal fat accumulation in migratory songbirds. Naturwissenschaften 89:1–10

    Article  PubMed  CAS  Google Scholar 

  • Baker J, Ranson R (1932) Factor affecting the breeding of the field mouse (Microtus agrestis). I. Light. Proc R Soc B 110:313–322

    Article  Google Scholar 

  • Barrett P, Ivanova E, Graham ES, Ross AW, Wilson D, Ple H, Mercer JG, Ebling FJ, Schuhler S, Dupre SM, Loudon A, Morgan PJ (2006) Photoperiodic regulation of cellular retinoic acid-binding protein 1, GPR50 and nestin in tanycytes of the third ventricle ependymal layer of the Siberian hamster. J Endocrinol 191:687–698

    Google Scholar 

  • Barrett P, Ebling FJ, Schuhler S, Wilson D, Ross AW, Warner A, Jethwa P, Boelen A, Visser TJ, Ozanne DM, Archer ZA, Mercer JG, Morgan PJ (2007) Hypothalamic thyroid hormone catabolism acts as a gatekeeper for the seasonal control of body weight and reproduction. Endocrinology 148:3608–3617

    Article  PubMed  CAS  Google Scholar 

  • Bartness TJ (1996) Photoperiod, sex, gonadal steroids, and housing density affect body fat in hamsters. Physiol Behav 60:517–529

    Article  PubMed  CAS  Google Scholar 

  • Bartness TJ, Elliott JA, Goldman BD (1989) Control of torpor and body weight patterns by a seasonal timer in Siberian hamsters. Am J Physiol 257:R142–R149

    PubMed  CAS  Google Scholar 

  • Bartness TJ, Goldman BD, Bittman EL (1991) SCN lesions block responses to systemic melatonin infusions in Siberian hamsters. Am J Physiol 260:R102–R112

    PubMed  CAS  Google Scholar 

  • Bartness TJ, Shrestha YB, Vaughan CH, Schwartz GJ, Song CK (2010) Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol Cell Endocrinol 318:34–43

    Article  PubMed  Google Scholar 

  • Bechtold DA, Loudon AS (2007) Hypothalamic thyroid hormones: mediators of seasonal physiology. Endocrinology 148:3605–3607

    Article  PubMed  CAS  Google Scholar 

  • Benoit J (1936) Rôle de la thyroïde dans la gonado-stimulation par la lumière artificielle chez le Canard domestique. C R Soc Biol 123:243–246

    CAS  Google Scholar 

  • Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR (2002) Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 23:38–89

    Article  PubMed  CAS  Google Scholar 

  • Bissonette T (1932) Modification of mammalian sexual cycles: reactions of ferrets (Putorius vulgaris) of both sexes to electric light added after dark in November and December. Proc R Soc B 110:322–336

    Article  Google Scholar 

  • Bissonette T, Bailey E (1944) Experimental modification and control of moult and changes of coat color in weasels by controlled lighting. Ann N Y Acad Sci 45:221–260

    Article  Google Scholar 

  • Bittman EL, Dempsey RJ, Karsch FJ (1983) Pineal melatonin secretion drives the reproductive response to daylength in the ewe. Endocrinology 113:2276–2283

    Article  PubMed  CAS  Google Scholar 

  • Blank JL, Nelson RJ, Buchberger A (1988) Cytochrome oxidase activity in brown fat varies with reproductive response and use of torpor in deer mice. Physiol Behav 43:301–306

    Article  PubMed  CAS  Google Scholar 

  • Boss-Williams KA, Bartness TJ (1996) NPY stimulation of food intake in Siberian hamsters is not photoperiod dependent. Physiol Behav 59:157–164

    Article  PubMed  CAS  Google Scholar 

  • Braulke LJ, Heldmaier G (2010) Torpor and ultradian rhythms require an intact signalling of the sympathetic nervous system. Cryobiology 60:198–203

    Article  PubMed  CAS  Google Scholar 

  • Braulke LJ, Klingenspor M, DeBarber A, Tobias SC, Grandy DK, Scanlan TS, Heldmaier G (2008) 3-Iodothyronamine: a novel hormone controlling the balance between glucose and lipid utilisation. J Comp Physiol B 178:167–177

    Article  PubMed  CAS  Google Scholar 

  • Bronson F (1989) Mammalian reproductive biology. University of Chicago Press, Chicago

    Google Scholar 

  • Carter DS, Goldman BD (1983a) Antigonadal effects of timed melatonin infusion in pinealectomized male Djungarian hamsters (Phodopus sungorus sungorus): duration is the critical parameter. Endocrinology 113:1261–1267

    Article  PubMed  CAS  Google Scholar 

  • Carter DS, Goldman BD (1983b) Progonadal role of the pineal in the Djungarian hamster (Phodopus sungorus sungorus): mediation by melatonin. Endocrinology 113:1268–1273

    Article  PubMed  CAS  Google Scholar 

  • Clements MK, McDonald TP, Wang R, Xie G, O’Dowd BF, George SR, Austin CP, Liu Q (2001) FMRFamide-related neuropeptides are agonists of the orphan G-protein-coupled receptor GPR54. Biochem Biophys Res Commun 284:1189–1193

    Article  PubMed  CAS  Google Scholar 

  • Czyba JC, Girod C, Durand N (1964) Sur l’antagonisme épiphyso-hypophysaire et les variations saisonnières de la spermatogénèse chez le hamster doré (Mesocricetus auratus). C R Seances Soc Biol Fil 158:742–745

    PubMed  CAS  Google Scholar 

  • Dahl GE, Evans NP, Thrun LA, Karsch FJ (1995) Thyroxine is permissive to seasonal transitions in reproductive neuroendocrine activity in the ewe. Biol Reprod 52:690–696

    Article  PubMed  CAS  Google Scholar 

  • Dardente H, Klosen P, Pevet P, Masson-Pevet M (2003) MT1 melatonin receptor mRNA expressing cells in the pars tuberalis of the European hamster: effect of photoperiod. J Neuroendocrinol 15:778–786

    Article  PubMed  CAS  Google Scholar 

  • Dark J (2005) Annual lipid cycles in hibernators: integration of physiology and behavior. Annu Rev Nutr 25:469–497

    Google Scholar 

  • Dark J, Miller DR, Zucker I (1994) Reduced glucose availability induces torpor in Siberian hamsters. Am J Physiol 267:R496–R501

    Google Scholar 

  • Demeneix BA, Henderson NE (1978) Serum T4 and T3 in active and torpid ground squirrels, Spermophilus richardsoni. Gen Comp Endocrinol 35:77–85

    Article  PubMed  CAS  Google Scholar 

  • Dibb KM, Hagarty CL, Loudon AS, Trafford AW (2005) Photoperiod-dependent modulation of cardiac excitation contraction coupling in the Siberian hamster. Am J Physiol Regul Integr Comp Physiol 288:R607–R614

    PubMed  CAS  Google Scholar 

  • Dufourny L, Levasseur A, Migaud M, Callebaut I, Pontarotti P, Malpaux B, Monget P (2008) GPR50 is the mammalian ortholog of Mel1c: evidence of rapid evolution in mammals. BMC Evol Biol 8:105

    Article  PubMed  CAS  Google Scholar 

  • Duncan MJ, Goldman BD (1984a) Hormonal regulation of the annual pelage color cycle in the Djungarian hamster, Phodopus sungorus. I. Role of the gonads and pituitary. J Exp Zool 230:89–95

    Article  PubMed  CAS  Google Scholar 

  • Duncan MJ, Goldman BD (1984b) Hormonal regulation of the annual pelage color cycle in the Djungarian hamster, Phodopus sungorus. II. Role of prolactin. J Exp Zool 230:97–103

    Article  PubMed  CAS  Google Scholar 

  • Dupré SM, Miedzinska K, Duval CV, Yu L, Goodman RL, Lincoln GA, Davis JR, McNeilly AS, Burt DD, Loudon AS (2010) Identification of Eya3 and TAC1 as long-day signals in the sheep pituitary. Curr Biol 20:829–835

    Article  PubMed  CAS  Google Scholar 

  • Ebling FJ, Barrett P (2008) The regulation of seasonal changes in food intake and body weight. J Neuroendocrinol 20:827–833

    Article  PubMed  CAS  Google Scholar 

  • Ebling FJ, Johnson E (1964) The action of hormones on spontaneous hair growth cycles in the rat. J Endocrinol 29:193–201

    Article  PubMed  CAS  Google Scholar 

  • Elliott JA (1976) Circadian rhythms and photoperiodic time measurement in mammals. Fed Proc 35:2339–2346

    PubMed  CAS  Google Scholar 

  • Elvert R, Heldmaier G (2005) Cardiorespiratory and metabolic reactions during entrance into torpor in dormice, Glis glis. J Exp Biol 208:1373–1383

    Google Scholar 

  • Figala J, Hoffmann K, Goldau G (1973) Zur Jahresperiodik beim Dsungarischen Zwerghamster Phodopus sungorus Pallas. Oecologia 12:89–118

    Article  Google Scholar 

  • Follett BK, Nicholls TJ (1985) Influences of thyroidectomy and thyroxine replacement on photoperiodically controlled reproduction in quail. J Endocrinol 107:211–221

    Article  PubMed  CAS  Google Scholar 

  • Freeman DA, Zucker I (2001) Refractoriness to melatonin occurs independently at multiple brain sites in Siberian hamsters. Proc Natl Acad Sci USA 98:6447–6452

    Article  PubMed  CAS  Google Scholar 

  • Freeman DA, Lewis DA, Kauffman AS, Blum RM, Dark J (2004) Reduced leptin concentrations are permissive for display of torpor in Siberian hamsters. Am J Physiol Regul Integr Comp Physiol 287:R97–R103

    Google Scholar 

  • French SS, Greives TJ, Zysling DA, Chester EM, Demas GE (2009) Leptin increases maternal investment. Proc Biol Sci 276:4003–4011

    Article  PubMed  CAS  Google Scholar 

  • Geiser F, Heldmaier G (1995) The impact of dietary fats, photoperiod, temperature and season on morphological variables, torpor patterns, and brown adipose tissue fatty acid composition of hamsters, Phodopus sungorus. J Comp Physiol B 165:406–415

    Article  PubMed  CAS  Google Scholar 

  • Geiser F, McAllan BM, Kenagy GJ, Hiebert SM (2007) Photoperiod affects daily torpor and tissue fatty acid composition in deer mice. Naturwissenschaften 94:319–325

    Article  PubMed  CAS  Google Scholar 

  • Glass JD, Dolan PL (1988) Melatonin acts in the brain to mediate seasonal steroid inhibition of luteinizing hormone secretion in the white-footed mouse (Peromyscus leucopus). Proc Soc Exp Biol Med 188:375–380

    PubMed  CAS  Google Scholar 

  • Glass JD, Lynch GR (1981) Melatonin: identification of sites of antigonadal action in mouse brain. Science 214:821–823

    Article  PubMed  CAS  Google Scholar 

  • Gluck EF, Stephens N, Swoap SJ (2006) Peripheral ghrelin deepens torpor bouts in mice through the arcuate nucleus neuropeptide Y signaling pathway. Am J Physiol Regul Integr Comp Physiol 291:R1303–R1309

    PubMed  CAS  Google Scholar 

  • Goldman BD (2001) Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement. J Biol Rhythms 16:283–301

    Article  PubMed  CAS  Google Scholar 

  • Goldman BD, Matt KS, Roychoudhury P, Stetson MH (1981) Prolactin release in golden hamsters: photoperiod and gonadal influences. Biol Reprod 24:287–292

    Google Scholar 

  • Goldsmith RA, Nicholls TJ (1984) Thyroidectomy prevents the development of photorefractoriness and the associated rise in plasma prolactin in starlings. Gen Comp Endocrinol 54:256–263

    Article  PubMed  CAS  Google Scholar 

  • Gorman MR, Zucker I (1995) Seasonal adaptations of Siberian hamsters. II. Pattern of change in daylength controls annual testicular and body weight rhythms. Biol Reprod 53:116–125

    Article  PubMed  CAS  Google Scholar 

  • Greives TJ, Mason AO, Scotti MA, Levine J, Ketterson ED, Kriegsfeld LJ, Demas GE (2007) Environmental control of kisspeptin: implications for seasonal reproduction. Endocrinology 148:1158–1166

    Article  PubMed  CAS  Google Scholar 

  • Greives TJ, Humber SA, Goldstein AN, Scotti MA, Demas GE, Kriegsfeld LJ (2008a) Photoperiod and testosterone interact to drive seasonal changes in kisspeptin expression in Siberian hamsters (Phodopus sungorus). J Neuroendocrinol 20:1339–1347

    Article  PubMed  CAS  Google Scholar 

  • Greives TJ, Kriegsfeld LJ, Demas GE (2008b) Exogenous kisspeptin does not alter photoperiod-induced gonadal regression in Siberian hamsters (Phodopus sungorus). Gen Comp Endocrinol 156:552–558

    Article  PubMed  CAS  Google Scholar 

  • Hanon EA, Lincoln GA, Fustin JM, Dardente H, Masson-Pevet M, Morgan PJ, Hazlerigg DG (2008) Ancestral TSH mechanism signals summer in a photoperiodic mammal. Curr Biol 18:1147–1152

    Article  PubMed  CAS  Google Scholar 

  • Hanon EA, Routledge K, Dardente H, Masson-Pevet M, Morgan PJ, Hazlerigg DG (2010) Effect of photoperiod on the thyroid-stimulating hormone neuroendocrine system in the European hamster (Cricetus cricetus). J Neuroendocrinol 22:51–55

    Article  PubMed  CAS  Google Scholar 

  • Hastings MH, Walker AP, Roberts AC, Herbert J (1988) Intra-hypothalamic melatonin blocks photoperiodic responsiveness in the male Syrian hamster. Neuroscience 24:987–991

    Article  PubMed  CAS  Google Scholar 

  • Hazlerigg DG, Wagner DC (2006) Seasonal photoperiodism in vertebrates: from coincidence to amplitude. Trends Endocrinol Metab 17:83–91

    Article  PubMed  CAS  Google Scholar 

  • Hazlerigg DG, Hastings MH, Morgan PJ (1996) Production of a prolactin releasing factor by the ovine pars tuberalis. J Neuroendocrinol 8:489–492

    Article  PubMed  CAS  Google Scholar 

  • Heldmaier G (1989) Seasonal acclimatization of energy requirements in mammals: functional significance of body weight control, hypothermia, torpor and hibernation. In: Wieser W, Gnaiger E (eds) Energy transformations in cells and organisms. Georg Thieme Verlag, Stuttgart, pp 130–139

    Google Scholar 

  • Heldmaier G, Lynch GR (1986) Pineal involvement in thermoregulation and acclimatization. Pineal Res Rev 4:97–139

    CAS  Google Scholar 

  • Heldmaier G, Steinlechner S (1981a) Seasonal control of energy requirements for thermoregulation in the Djungarian hamster (Phodopus sungorus), living in natural photoperiod. J Comp Physiol B 142:429–437

    Article  Google Scholar 

  • Heldmaier G, Steinlechner S (1981b) Seasonal pattern and energetics of short daily torpor in the Djungarian hamster, Phodopus sungorus. Oecologia 48:265–270

    Article  Google Scholar 

  • Heldmaier G, Steinlechner S, Rafael J, Vsiansky P (1981) Photoperiodic control and effects of melatonin on nonshivering thermogenesis and brown adipose tissue. Science 212:917–919

    Article  PubMed  CAS  Google Scholar 

  • Heldmaier G, Steinlechner S, Rafael J, Latteier B (1982) Photoperiod and ambient temperature as environmental cues for seasonal thermogenic adaptation in the Djungarian hamster, Phodopus sungorus. Int J Biometeorol 26:339–345

    Google Scholar 

  • Heldmaier G, Klingenspor M, Werneyer M, Lampi BJ, Brooks SP, Storey KB (1999) Metabolic adjustments during daily torpor in the Djungarian hamster. Am J Physiol 276:E896–E906

    Google Scholar 

  • Helwig M, Archer ZA, Heldmaier G, Tups A, Mercer JG, Klingenspor M (2009) Photoperiodic regulation of satiety mediating neuropeptides in the brainstem of the seasonal Siberian hamster (Phodopus sungorus). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195:631–642

    Article  PubMed  Google Scholar 

  • Herwig A, Ross AW, Nilaweera KN, Morgan PJ, Barrett P (2008) Hypothalamic thyroid hormone in energy balance regulation. Obes Facts 1:71–79

    Article  PubMed  CAS  Google Scholar 

  • Hill R (1992) The altricial/precocial contrast in the thermal relations and energetics of small mammals. In: Tomasi T, Horton T (eds) Mammalian energetics. Cornell University Press, Ithaca, pp 122–159

    Google Scholar 

  • Hill JW, Elmquist JK, Elias CF (2008) Hypothalamic pathways linking energy balance and reproduction. Am J Physiol Endocrinol Metab 294:E827–E832

    Article  PubMed  CAS  Google Scholar 

  • Hoffman RA, Reiter RJ (1965) Pineal gland: influence on gonads of male hamsters. Science 148:1609–1611

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann K (1973) The influence of photoperiod and melatonin on testis size, body weight, and pelage colour in the Djungarian hamster (Phodopus sungorus). J Comp Physiol 85:267–282

    Article  CAS  Google Scholar 

  • Hoffmann K (1979) Photoperiod, pineal, melatonin and reproduction in hamsters. Prog Brain Res 52:397–415

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann K (1981) Ist die Zirbeldrüse ein antigonadotropes Organ? Verh Dtsch Zool Ges 97–109

  • Hoffmann K (1982) The critical photoperiod in the Djungarian hamster Phodopus sungorus. In: Aschoff J, Daan S, Groos G (eds) Vertebrate circadian systems. Springer, Berlin, pp 297–304

    Google Scholar 

  • Hoffmann K, Kuderling I (1975) Pinealectomy inhibits stimulation of testicular development by long photoperiods in a hamster (Phodopus sungorus). Experientia 31:122–123

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann K, Illnerova H, Vanecek J (1986) Change in duration of the nighttime melatonin peak may be a signal driving photoperiodic responses in the Djungarian hamster (Phodopus sungorus). Neurosci Lett 67:68–72

    Article  PubMed  CAS  Google Scholar 

  • Howard JK, Cave BJ, Oksanen LJ, Tzameli I, Bjorbaek C, Flier JS (2004) Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3. Nat Med 10:734–738

    Article  PubMed  CAS  Google Scholar 

  • Johnson E (1958a) Quantitative studies of hair growth in the albino rat. II. The effect of sex hormones. J Endocrinol 16:351–359

    Article  PubMed  CAS  Google Scholar 

  • Johnson E (1958b) Quantitative studies of hair growth in the albino rat. III. The role of the adrenal glands. J Endocrinol 16:360–368

    Article  PubMed  CAS  Google Scholar 

  • Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS (1999) Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 20:68–100

    Article  PubMed  CAS  Google Scholar 

  • Kameda Y, Arai Y, Nishimaki T (2003) Ultrastructural localization of vimentin immunoreactivity and gene expression in tanycytes and their alterations in hamsters kept under different photoperiods. Cell Tissue Res 314:251–262

    Article  PubMed  CAS  Google Scholar 

  • Karsch FJ, Dahl GE, Hachigian TM, Thrun LA (1995) Involvement of thyroid hormones in seasonal reproduction. J Reprod Fertil Suppl 49:409–422

    PubMed  CAS  Google Scholar 

  • Klingenberg M, Huang SG (1999) Structure and function of the uncoupling protein from brown adipose tissue. Biochim Biophys Acta 1415:271–296

    Article  PubMed  CAS  Google Scholar 

  • Klingenspor M, Niggemann H, Heldmaier G (2000) Modulation of leptin sensitivity by short photoperiod acclimation in the Djungarian hamster, Phodopus sungorus. J Comp Physiol B 170:37–43

    Article  PubMed  CAS  Google Scholar 

  • Klosen P, Bienvenu C, Demarteau O, Dardente H, Guerrero H, Pevet P, Masson-Pevet M (2002) The mt1 melatonin receptor and RORbeta receptor are co-localized in specific TSH-immunoreactive cells in the pars tuberalis of the rat pituitary. J Histochem Cytochem 50:1647–1657

    PubMed  CAS  Google Scholar 

  • Knopper LD, Boily P (2000) The energy budget of captive Siberian hamsters, Phodopus sungorus, exposed to photoperiod changes: mass loss is caused by a voluntary decrease in food intake. Physiol Biochem Zool 73:517–522

    Article  PubMed  CAS  Google Scholar 

  • Korf HW, Stehle JH (2005) Das circadiane System der Säugetiere—integraler Bestandteil des neuroendocrinen Systems. In: Peschke E (ed) Endokrinologie II, Vorträge im Rahmen des Projekts “Zeitstrukturen endokriner Systeme” Sächsische Akademie der Wissenschaften zu Leipzig. Hirzel Verlag, Stuttgart, pp 9–31

    Google Scholar 

  • Korhonen T, Mustonen AM, Nieminen P, Saarela S (2008) Effects of cold exposure, exogenous melatonin and short-day treatment on the weight-regulation and body temperature of the Siberian hamster (Phodopus sungorus). Regul Pept 149:60–66

    Article  PubMed  CAS  Google Scholar 

  • Körtner G, Heldmaier G (1995) Body weight cycles and energy balance in the alpine marmot (Marmota marmota). Physiol Zool 68:149–163

    Google Scholar 

  • Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E, Brezillon S, Tyldesley R, Suarez-Huerta N, Vandeput F, Blanpain C, Schiffmann SN, Vassart G, Parmentier M (2001) The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 276:34631–34636

    Article  PubMed  CAS  Google Scholar 

  • Kriegsfeld LJ, Mei DF, Bentley GE, Ubuka T, Mason AO, Inoue K, Ukena K, Tsutsui K, Silver R (2006) Identification and characterization of a gonadotropin-inhibitory system in the brains of mammals. Proc Natl Acad Sci USA 103:2410–2415

    Article  PubMed  CAS  Google Scholar 

  • Król E, Tups A, Archer ZA, Ross AW, Moar KM, Bell LM, Duncan JS, Mayer C, Morgan PJ, Mercer JG, Speakman JR (2007) Altered expression of SOCS3 in the hypothalamic arcuate nucleus during seasonal body mass changes in the field vole, Microtus agrestis. J Neuroendocrinol 19:83–94

    Article  PubMed  CAS  Google Scholar 

  • Küderling I, Trocchi W, Dellantonio M, Spagnesi M, Fraschini F (1979) Investigations on seasonal rhythms and the effect of melatonin in the Alpine hare (Lepus timidus timidus L.). Prog Brain Res 52:417–420

    Article  PubMed  Google Scholar 

  • Kuhlmann MT, Clemen G, Schlatt S (2003) Molting in the Djungarian hamster (Phodopus sungorus Pallas): seasonal or continuous process? J Exp Zool A Comp Exp Biol 295:160–171

    Article  PubMed  Google Scholar 

  • Ladyman SR, Augustine RA, Grattan DR (2010) Hormone interactions regulating energy balance during pregnancy. J Neuroendocrinol 22:805–817

    PubMed  CAS  Google Scholar 

  • Leblanc J, Villemaire A (1970) Thyroxine and noradrenaline on noradrenaline sensitivity, cold resistance, and brown fat. Am J Physiol 218:1742–1745

    PubMed  CAS  Google Scholar 

  • Lechan RM, Fekete C (2005) Role of thyroid hormone deiodination in the hypothalamus. Thyroid 15:883–897

    Article  PubMed  CAS  Google Scholar 

  • Lincoln GA (1979) Photoperiodic control of seasonal breeding in the ram: participation of the cranial sympathetic nervous system. J Endocrinol 82:135–147

    Article  PubMed  CAS  Google Scholar 

  • Lincoln G (1999) Melatonin modulation of prolactin and gonadotrophin secretion. Systems ancient and modern. Adv Exp Med Biol 460:137–153

    Article  PubMed  CAS  Google Scholar 

  • Lincoln GA (2002) Neuroendocrine regulation of seasonal gonadotrophin and prolactin rhythms: lessons from the Soay ram model. Reprod Suppl 59:131–147

    PubMed  CAS  Google Scholar 

  • Lincoln GA, Clarke IJ (1994) Photoperiodically-induced cycles in the secretion of prolactin in hypothalamo-pituitary disconnected rams: evidence for translation of the melatonin signal in the pituitary gland. J Neuroendocrinol 6:251–260

    Article  PubMed  CAS  Google Scholar 

  • Lincoln GA, Maeda K (1992a) Effects of placing micro-implants of melatonin in the mediobasal hypothalamus and preoptic area on the secretion of prolactin and beta-endorphin in rams. J Endocrinol 134:437–448

    Article  PubMed  CAS  Google Scholar 

  • Lincoln GA, Maeda KI (1992b) Reproductive effects of placing micro-implants of melatonin in the mediobasal hypothalamus and preoptic area in rams. J Endocrinol 132:201–215

    Article  PubMed  CAS  Google Scholar 

  • Lincoln GA, Andersson H, Hazlerigg D (2003a) Clock genes and the long-term regulation of prolactin secretion: evidence for a photoperiod/circannual timer in the pars tuberalis. J Neuroendocrinol 15:390–397

    Article  PubMed  CAS  Google Scholar 

  • Lincoln GA, Andersson H, Loudon A (2003b) Clock genes in calendar cells as the basis of annual timekeeping in mammals—a unifying hypothesis. J Endocrinol 179:1–13

    Article  PubMed  CAS  Google Scholar 

  • Logan A, Weatherhead B (1980) Post-tyrosinase inhibition of melanogenesis by melatonin in hair follicles in vitro. J Invest Dermatol 74:47–50

    Article  PubMed  CAS  Google Scholar 

  • Lynch GR, White SE, Grundel R, Berger MS (1978) Effects of photoperiod, melatonin administration and thyroid block on spontaneous daily torpor and temperature regulation in the white-footed mouse, Peromyscus leucopus. J Comp Physiol B 125:157–163

    Article  CAS  Google Scholar 

  • Malpaux B, Robinson JE, Brown MB, Karsch FJ (1987) Reproductive refractoriness of the ewe to inductive photoperiod is not caused by inappropriate secretion of melatonin. Biol Reprod 36:1333–1341

    Article  PubMed  CAS  Google Scholar 

  • Malpaux B, Daveau A, Maurice-Mandon F, Duarte G, Chemineau P (1998) Evidence that melatonin acts in the premammillary hypothalamic area to control reproduction in the ewe: presence of binding sites and stimulation of luteinizing hormone secretion by in situ microimplant delivery. Endocrinology 139:1508–1516

    Article  PubMed  CAS  Google Scholar 

  • Martinet L, Meunier M, Allain D (1981) Control of delayed implantation and onset of spring moult in the mink (Mustela vison) by daylight ratio, prolactin and melatonin. In: Pelletier J, Ravault JP (eds) Photoperiodism and reproduction. INRA Pub, Paris, pp 253–261

    Google Scholar 

  • Martinet L, Ravault JP, Meunier M (1982) Seasonal variations in mink (Mustela vison) plasma prolactin measured by heterologous radioimmunoassay. Gen Comp Endocrinol 48:71–75

    Article  PubMed  CAS  Google Scholar 

  • Mason AO, Greives TJ, Scotti MA, Levine J, Frommeyer S, Ketterson ED, Demas GE, Kriegsfeld LJ (2007) Suppression of kisspeptin expression and gonadotropic axis sensitivity following exposure to inhibitory day lengths in female Siberian hamsters. Horm Behav 52:492–498

    Article  PubMed  CAS  Google Scholar 

  • Maurel D, Boissin J (1979) Seasonal variations of thyroid activity in the adult male badger (Meles meles L.). Gen Comp Endocrinol 38:207–214

    Article  PubMed  CAS  Google Scholar 

  • Maurel D, Coutant C, Boissin J (1987) Thyroid and gonadal regulation of hair growth during the seasonal molt in the male European badger, Meles meles L. Gen Comp Endocrinol 65:317–327

    Article  PubMed  CAS  Google Scholar 

  • Maywood ES, Hastings MH (1995) Lesions of the iodomelatonin-binding sites of the mediobasal hypothalamus spare the lactotropic, but block the gonadotropic response of male Syrian hamsters to short photoperiod and to melatonin. Endocrinology 136:144–153

    Article  PubMed  CAS  Google Scholar 

  • Mercer JG, Hoggard N, Williams LM, Lawrence CB, Hannah LT, Trayhurn P (1996) Localization of leptin receptor mRNA and the long form splice variant (Ob-Rb) in mouse hypothalamus and adjacent brain regions by in situ hybridization. FEBS Lett 387:113–116

    Google Scholar 

  • Mercer JG, Moar KM, Ross AW, Hoggard N, Morgan PJ (2000) Photoperiod regulates arcuate nucleus POMC, AGRP, and leptin receptor mRNA in Siberian hamster hypothalamus. Am J Physiol Regul Integr Comp Physiol 278:R271–R281

    PubMed  CAS  Google Scholar 

  • Mercer JG, Moar KM, Logie TJ, Findlay PA, Adam CL, Morgan PJ (2001) Seasonally inappropriate body weight induced by food restriction: effect on hypothalamic gene expression in male Siberian hamsters. Endocrinology 142:4173–4181

    Article  PubMed  CAS  Google Scholar 

  • Messager S, Chatzidaki EE, Ma D, Hendrick AG, Zahn D, Dixon J, Thresher RR, Malinge I, Lomet D, Carlton MB, Colledge WH, Caraty A, Aparicio SA (2005) Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci USA 102:1761–1766

    Article  PubMed  CAS  Google Scholar 

  • Mitchell B, McCowan D, Nicholson IA (1976) Annual cycles of body weight and condition in Scottish Red deer, Cervus elaphus. J Zool 180:107–127

    Article  Google Scholar 

  • Morgan PJ (2000) The pars tuberalis: the missing link in the photoperiodic regulation of prolactin secretion? J Neuroendocrinol 12:287–295

    Article  PubMed  CAS  Google Scholar 

  • Morgan PJ, Mercer JG (2001) The regulation of body weight: lessons from the seasonal animal. Proc Nutr Soc 60:127–134

    Article  PubMed  CAS  Google Scholar 

  • Morgan PJ, Williams LM (1996) The pars tuberalis of the pituitary: a gateway for neuroendocrine output. Rev Reprod 1:153–161

    Article  PubMed  CAS  Google Scholar 

  • Morgan PJ, Barrett P, Howell HE, Helliwell R (1994) Melatonin receptors: localization, molecular pharmacology and physiological significance. Neurochem Int 24:101–146

    Article  PubMed  CAS  Google Scholar 

  • Morgan PJ, Ross AW, Mercer JG, Barrett P (2003) Photoperiodic programming of body weight through the neuroendocrine hypothalamus. J Endocrinol 177:27–34

    Article  PubMed  CAS  Google Scholar 

  • Morhardt JE (1970) Heart rates, breathing rates and the effects of atropine and acetylcholine on white-footed mice (Peromyscus sp.) during daily torpor. Comp Biochem Physiol 33:441–457

    Google Scholar 

  • Myers P, Master LL (1983) Reproduction by Peromyscus maniculatus: size and compromise. J Mammal 64:1–18

    Google Scholar 

  • Naef L, Woodside B (2007) Prolactin/leptin interactions in the control of food intake in rats. Endocrinology 148:5977–5983

    Article  PubMed  CAS  Google Scholar 

  • Nakao N, Ono H, Yamamura T, Anraku T, Takagi T, Higashi K, Yasuo S, Katou Y, Kageyama S, Uno Y, Kasukawa T, Iigo M, Sharp PJ, Iwasawa A, Suzuki Y, Sugano S, Niimi T, Mizutani M, Namikawa T, Ebihara S, Ueda HR, Yoshimura T (2008) Thyrotrophin in the pars tuberalis triggers photoperiodic response. Nature 452:317–322

    Article  PubMed  CAS  Google Scholar 

  • Niklowitz P, Hoffmann K (1988) Pineal and pituitary involvement in the photoperiodic regulation of body weight, coat color and testicular size of the Djungarian hamster, Phodopus sungorus. Biol Reprod 39:489–498

    Article  PubMed  CAS  Google Scholar 

  • Paul MJ, Kauffman AS, Zucker I (2004) Feeding schedule controls circadian timing of daily torpor in SCN-ablated Siberian hamsters. J Biol Rhythms 19:226–237

    Google Scholar 

  • Paul MJ, Freeman DA, Park JH, Dark J (2005) Neuropeptide Y induces torpor-like hypothermia in Siberian hamsters. Brain Res 1055:83–92

    Article  PubMed  CAS  Google Scholar 

  • Paul MJ, George NT, Zucker I, Butler MP (2007) Photoperiodic and hormonal influences on fur density and regrowth in two hamster species. Am J Physiol Regul Integr Comp Physiol 293:R2363–R2369

    PubMed  CAS  Google Scholar 

  • Paul MJ, Zucker I, Schwartz WJ (2008) Tracking the seasons: the internal calendars of vertebrates. Philos Trans R Soc Lond B Biol Sci 363:341–361

    Article  PubMed  Google Scholar 

  • Paul MJ, Galang J, Schwartz WJ, Prendergast BJ (2009) Intermediate-duration day lengths unmask reproductive responses to nonphotic environmental cues. Am J Physiol Regul Integr Comp Physiol 296:R1613–R1619

    Google Scholar 

  • Pelz KM, Routman D, Driscoll JR, Kriegsfeld LJ, Dark J (2008) Monosodium glutamate-induced arcuate nucleus damage affects both natural torpor and 2DG-induced torpor-like hypothermia in Siberian hamsters. Am J Physiol Regul Integr Comp Physiol 294:R255–R265

    Google Scholar 

  • Prendergast BJ, Mosinger B Jr, Kolattukudy PE, Nelson RJ (2002) Hypothalamic gene expression in reproductively photoresponsive and photorefractory Siberian hamsters. Proc Natl Acad Sci USA 99:16291–16296

    Article  PubMed  CAS  Google Scholar 

  • Prendergast BJ, Hotchkiss AK, Wen J, Horton TH, Nelson RJ (2006) Refractoriness to short day lengths augments tonic and gonadotrophin-releasing hormone-stimulated lutenising hormone secretion. J Neuroendocrinol 18:339–348

    Article  PubMed  CAS  Google Scholar 

  • Pucek Z (1970) Seasonal and age change in shrews as an adaptive process. Symp Zool Soc Lond 26:189–207

    Google Scholar 

  • Rafael J, Vsiansky P, Heldmaier G (1985a) Increased contribution of brown adipose tissue to nonshivering thermogenesis in the Djungarian hamster during cold-adaptation. J Comp Physiol B 155:717–722

    Article  PubMed  CAS  Google Scholar 

  • Rafael J, Vsiansky P, Heldmaier G (1985b) Seasonal adaptation of brown adipose tissue in the Djungarian hamster. J Comp Physiol B 155:521–528

    Article  PubMed  CAS  Google Scholar 

  • Reddy AB, Cronin AS, Ford H, Ebling FJ (1999) Seasonal regulation of food intake and body weight in the male Siberian hamster: studies of hypothalamic orexin (hypocretin), neuropeptide Y (NPY) and pro-opiomelanocortin (POMC). Eur J Neurosci 11:3255–3264

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ (1993) The melatonin rhythm: both a clock and a calendar. Experientia 49:654–664

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ, Hester RJ (1966) Interrelationships of the pineal gland, the superior cervical ganglia and the photoperiod in the regulation of the endocrine systems of hamsters. Endocrinology 79:1168–1170

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ, Johnson LY (1974) Depressant action of the pineal gland on pituitary luteinizing hormone and prolactin in male hamsters. Horm Res 5:311–320

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ, Klaus S, Ebbinghaus C, Heldmaier G, Redlin U, Ricquier D, Vaughan MK, Steinlechner S (1990) Inhibition of 5′-deiodination of thyroxine suppresses the cold-induced increase in brown adipose tissue messenger ribonucleic acid for mitochondrial uncoupling protein without influencing lipoprotein lipase activity. Endocrinology 126:2550–2554

    Article  PubMed  CAS  Google Scholar 

  • Revel FG, Saboureau M, Masson-Pevet M, Pevet P, Mikkelsen JD, Simonneaux V (2006) Kisspeptin mediates the photoperiodic control of reproduction in hamsters. Curr Biol 16:1730–1735

    Article  PubMed  CAS  Google Scholar 

  • Revel FG, Ansel L, Klosen P, Saboureau M, Pevet P, Mikkelsen JD, Simonneaux V (2007) Kisspeptin: a key link to seasonal breeding. Rev Endocr Metab Disord 8:57–65

    Article  PubMed  CAS  Google Scholar 

  • Revel FG, Saboureau M, Pevet P, Simonneaux V, Mikkelsen JD (2008) RFamide-related peptide gene is a melatonin-driven photoperiodic gene. Endocrinology 149:902–912

    Article  PubMed  CAS  Google Scholar 

  • Robson AJ, Rousseau K, Loudon AS, Ebling FJ (2002) Cocaine and amphetamine-regulated transcript mRNA regulation in the hypothalamus in lean and obese rodents. J Neuroendocrinol 14:697–709

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez EM, Blazquez JL, Pastor FE, Pelaez B, Pena P, Peruzzo B, Amat P (2005) Hypothalamic tanycytes: a key component of brain-endocrine interaction. Int Rev Cytol 247:89–164

    Article  PubMed  CAS  Google Scholar 

  • Rose J, Sterner M (1992) The role of the adrenal glands in regulating onset of winter fur growth in mink (Mustela vison). J Exp Zool 262:469–473

    Article  PubMed  CAS  Google Scholar 

  • Ross PD (1998) Phodopus sungorus. Mamm Species 595:1–9

    Article  Google Scholar 

  • Rousseau K, Atcha Z, Cagampang FR, Le Rouzic P, Stirland JA, Ivanov TR, Ebling FJ, Klingenspor M, Loudon AS (2002) Photoperiodic regulation of leptin resistance in the seasonally breeding Siberian hamster (Phodopus sungorus). Endocrinology 143:3083–3095

    Article  PubMed  CAS  Google Scholar 

  • Ruf T, Arnold W (2008) Effects of polyunsaturated fatty acids on hibernation and torpor: a review and hypothesis. Am J Physiol Regul Integr Comp Physiol 294:R1044–R1052

    PubMed  CAS  Google Scholar 

  • Ruf T, Steinlechner S, Heldmaier G (1989) Rhythmicity of body temperature and torpor in the Djungarian hamster, Phodopus sungorus. In: Malan A, Canguilhem B (eds) Living in the cold. Colloque INSERM/John Libbey Eurotext, London/Paris, pp 53–61

    Google Scholar 

  • Ruf T, Klingenspor M, Preis H, Heldmaier G (1991) Daily torpor in the Djungarian hamster (Phodopus sungorus): interactions with food intake, activity, and social behaviour. J Comp Physiol B 160:609–615

    Article  Google Scholar 

  • Rust CC (1965) Hormonal control of pelage cycles in the short tailed weasel (Mustela erminea bangsi). Gen Comp Endocrinol 56:222–231

    Article  PubMed  CAS  Google Scholar 

  • Saleh TM, Cechetto DF (1996) Peptide changes in the parabrachial nucleus following cervical vagal stimulation. J Comp Neurol 366:390–405

    Article  PubMed  CAS  Google Scholar 

  • Scherbarth F, Rozman J, Klingenspor M, Brabant G, Steinlechner S (2007) Wheel running affects seasonal acclimatization of physiological and morphological traits in the Djungarian hamster (Phodopus sungorus). Am J Physiol Regul Integr Comp Physiol 293:R1368–R1375

    PubMed  CAS  Google Scholar 

  • Scherbarth F, Petri I, Steinlechner S (2008) Effects of wheel running on photoperiodic responses of Djungarian hamsters (Phodopus sungorus). J Comp Physiol B 178:607–615

    Article  PubMed  Google Scholar 

  • Schlatt S, De Geyter M, Kliesch S, Nieschlag E, Bergmann M (1995) Spontaneous recrudescence of spermatogenesis in the photoinhibited male Djungarian hamster, Phodopus sungorus. Biol Reprod 53:1169–1177

    Article  PubMed  CAS  Google Scholar 

  • Schuhler S, Horan TL, Hastings MH, Mercer JG, Morgan PJ, Ebling FJ (2003) Decrease of food intake by MC4-R agonist MTII in Siberian hamsters in long and short photoperiods. Am J Physiol Regul Integr Comp Physiol 284:R227–R232

    PubMed  CAS  Google Scholar 

  • Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671

    PubMed  CAS  Google Scholar 

  • Seidel A, Heldmaier G (1982) Thyroid hormones affect the physiological availability of nonshivering thermogenesis. Pflügers Arch 393:283–285

    Article  PubMed  CAS  Google Scholar 

  • Seidel A, Heldmaier G, Schulz F (1987) Seasonal changes in circulating levels of thyroid hormones are not dependent on the age in Djungarian hamsters Phodopus sungorus. Comp Biochem Physiol A Comp Physiol 88:71–73

    Article  PubMed  CAS  Google Scholar 

  • Shahed A, Young KA (2009) Differential ovarian expression of KiSS-1 and GPR-54 during the estrous cycle and photoperiod induced recrudescence in Siberian hamsters (Phodopus sungorus). Mol Reprod Dev 76:444–452

    Article  PubMed  CAS  Google Scholar 

  • Skinner DC, Malpaux B (1999) High melatonin concentrations in third ventricular cerebrospinal fluid are not due to Galen vein blood recirculating through the choroid plexus. Endocrinology 140:4399–4405

    Article  PubMed  CAS  Google Scholar 

  • Smale L, Lee TM, Nelson RJ, Zucker I (1990) Prolactin counteracts effects of short day lengths on pelage growth in the meadow vole, Microtus pennsylvanicus. J Exp Zool 253:186–188

    Article  PubMed  CAS  Google Scholar 

  • Smart RC, Oh HS, Chanda S, Robinette CL (1999) Effects of 17-beta-estradiol and ICI 182 780 on hair growth in various strains of mice. J Investig Dermatol Symp Proc 4:285–289

    Article  PubMed  CAS  Google Scholar 

  • Smith JT, Acohido BV, Clifton DK, Steiner RA (2006) KiSS-1 neurones are direct targets for leptin in the ob/ob mouse. J Neuroendocrinol 18:298–303

    Article  PubMed  CAS  Google Scholar 

  • Song CK, Bartness TJ (2001) CNS sympathetic outflow neurons to white fat that express MEL receptors may mediate seasonal adiposity. Am J Physiol Regul Integr Comp Physiol 281:R666–R672

    PubMed  CAS  Google Scholar 

  • Speakman JR (2008) The physiological costs of reproduction in small mammals. Philos Trans R Soc Lond B Biol Sci 363:375–398

    Article  PubMed  Google Scholar 

  • Spessert R (2005) Photoperiodismus beim Säuger: Die Rolle von Melatonin. In: Peschke E (ed) Endokrinologie II Vorträge im Rahmen des Projekts “Zeitstrukturen endokriner Systeme”. Sächsische Akademie der Wissenschaften zu Leipzig, Hirzel Verlag, Suttgart, pp 57–74

    Google Scholar 

  • Stanley S, Pinto S, Segal J, Perez CA, Viale A, DeFalco J, Cai X, Heisler LK, Friedman JM (2010) Identification of neuronal subpopulations that project from hypothalamus to both liver and adipose tissue polysynaptically. Proc Natl Acad Sci USA 107:7024–7029

    Google Scholar 

  • Steinlechner S, Niklowitz P (1992) Impact of photoperiod and melatonin on reproduction in small mammals. Anim Reprod Sci 30:1–28

    Article  Google Scholar 

  • Steinlechner S, Heldmaier G, Becker H (1983) The seasonal cycle of body weight in the Djungarian hamster: photoperiodic control and the influence of starvation and melatonin. Oecologia 60:401–405

    Article  Google Scholar 

  • Stirland JA, Johnston JD, Cagampang FR, Morgan PJ, Castro MG, White MR, Davis JR, Loudon AS (2001) Photoperiodic regulation of prolactin gene expression in the Syrian hamster by a pars tuberalis-derived factor. J Neuroendocrinol 13:147–157

    Article  PubMed  CAS  Google Scholar 

  • Swoap SJ, Weinshenker D (2008) Norepinephrine controls both torpor initiation and emergence via distinct mechanisms in the mouse. PLoS One 3:e4038

    Google Scholar 

  • Swoap SJ, Gutilla MJ, Liles LC, Smith RO, Weinshenker D (2006) The full expression of fasting-induced torpor requires beta 3-adrenergic receptor signaling. J Neurosci 26:241–245

    Article  PubMed  CAS  Google Scholar 

  • Swoap SJ, Rathvon M, Gutilla M (2007) AMP does not induce torpor. Am J Physiol Regul Integr Comp Physiol 293:R468–R473

    PubMed  CAS  Google Scholar 

  • Trayhurn P (2005) Endocrine and signalling role of adipose tissue: new perspectives on fat. Acta Physiol Scand 184:285–293

    Google Scholar 

  • Trayhurn P, Bing C (2006) Appetite and energy balance signals from adipocytes. Philos Trans R Soc Lond B Biol Sci 361:1237–1249

    Article  PubMed  CAS  Google Scholar 

  • Trayhurn P, Thomas ME, Duncan JS, Rayner DV (1995) Effects of fasting and refeeding on ob gene expression in white adipose tissue of lean and obese (oblob) mice. FEBS Lett 368:488–490

    Google Scholar 

  • Tsutsui K, Saigoh E, Ukena K, Teranishi H, Fujisawa Y, Kikuchi M, Ishii S, Sharp PJ (2000) A novel avian hypothalamic peptide inhibiting gonadotropin release. Biochem Biophys Res Commun 275:661–667

    Article  PubMed  CAS  Google Scholar 

  • Tu HM, Kim SW, Salvatore D, Bartha T, Legradi G, Larsen PR, Lechan RM (1997) Regional distribution of type 2 thyroxine deiodinase messenger ribonucleic acid in rat hypothalamus and pituitary and its regulation by thyroid hormone. Endocrinology 138:3359–3368

    Article  PubMed  CAS  Google Scholar 

  • Tups A (2009) Physiological models of leptin resistance. J Neuroendocrinol 21:961–971

    Article  PubMed  CAS  Google Scholar 

  • Tups A, Ellis C, Moar KM, Logie TJ, Adam CL, Mercer JG, Klingenspor M (2004a) Photoperiodic regulation of leptin sensitivity in the Siberian hamster, Phodopus sungorus, is reflected in arcuate nucleus SOCS-3 (suppressor of cytokine signaling) gene expression. Endocrinology 145:1185–1193

    Article  PubMed  CAS  Google Scholar 

  • Tups A, Helwig M, Khorooshi RM, Archer ZA, Klingenspor M, Mercer JG (2004b) Circulating ghrelin levels and central ghrelin receptor expression are elevated in response to food deprivation in a seasonal mammal (Phodopus sungorus). J Neuroendocrinol 16:922–928

    Article  PubMed  CAS  Google Scholar 

  • Tups A, Barrett P, Ross AW, Morgan PJ, Klingenspor M, Mercer JG (2006) The suppressor of cytokine signalling 3, SOCS3, may be one critical modulator of seasonal body weight changes in the Siberian hamster, Phodopus sungorus. J Neuroendocrinol 18:139–145

    Article  PubMed  CAS  Google Scholar 

  • Turek FW, Campbell CS (1979) Photoperiodic regulation of neuroendocrine-gonadal activity. Biol Reprod 20:32–50

    PubMed  CAS  Google Scholar 

  • Turek FW, Desjardins C, Menaker M (1975) Melatonin: antigonadal and progonadal effects in male golden hamsters. Science 190:280–282

    Article  PubMed  CAS  Google Scholar 

  • Viguié C, Battaglia DF, Krasa HB, Thrun LA, Karsch FJ (1999) Thyroid hormones act primarily within the brain to promote the seasonal inhibition of luteinizing hormone secretion in the ewe. Endocrinology 140:1111–1117

    Article  PubMed  Google Scholar 

  • Vitale PM, Darrow JM, Duncan MJ, Shustak CA, Goldman BD (1985) Effects of photoperiod, pinealectomy and castration on body weight and daily torpor in Djungarian hamsters (Phodopus sungorus). J Endocrinol 106:367–375

    Article  PubMed  CAS  Google Scholar 

  • Vrang N, Hansen M, Larsen PJ, Tang-Christensen M (2007) Characterization of brainstem preproglucagon projections to the paraventricular and dorsomedial hypothalamic nuclei. Brain Res 1149:118–126

    Article  PubMed  CAS  Google Scholar 

  • Wade GN, Bartness TJ (1984) Effects of photoperiod and gonadectomy on food intake, body weight, and body composition in Siberian hamsters. Am J Physiol 246:R26–R30

    PubMed  CAS  Google Scholar 

  • Watanabe M, Yasuo S, Watanabe T, Yamamura T, Nakao N, Ebihara S, Yoshimura T (2004) Photoperiodic regulation of type 2 deiodinase gene in Djungarian hamster: possible homologies between avian and mammalian photoperiodic regulation of reproduction. Endocrinology 145:1546–1549

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Yamamura T, Watanabe M, Yasuo S, Nakao N, Dawson A, Ebihara S, Yoshimura T (2007) Hypothalamic expression of thyroid hormone-activating and -inactivating enzyme genes in relation to photorefractoriness in birds and mammals. Am J Physiol Regul Integr Comp Physiol 292:R568–R572

    PubMed  CAS  Google Scholar 

  • Weaver DR, Liu C, Reppert SM (1996) Nature’s knockout: the Mel1b receptor is not necessary for reproductive and circadian responses to melatonin in Siberian hamsters. Mol Endocrinol 10:1478–1487

    Article  PubMed  CAS  Google Scholar 

  • Webster JR, Moenter SM, Barrell GK, Lehman MN, Karsch FJ (1991a) Role of the thyroid gland in seasonal reproduction. III. Thyroidectomy blocks seasonal suppression of gonadotropin-releasing hormone secretion in sheep. Endocrinology 129:1635–1643

    Article  PubMed  CAS  Google Scholar 

  • Webster JR, Moenter SM, Woodfill CJ, Karsch FJ (1991b) Role of the thyroid gland in seasonal reproduction. II. Thyroxine allows a season-specific suppression of gonadotropin secretion in sheep. Endocrinology 129:176–183

    Article  PubMed  CAS  Google Scholar 

  • Weiner J (1987) Maximum energy assimilation rates in the Djungarian hamster (Phodopus sungorus). Oecologia 72:297–302

    Google Scholar 

  • Wittkowski W, Bergmann M, Hoffmann K, Pera F (1988) Photoperiod-dependent changes in TSH-like immunoreactivity of cells in the hypophysial pars tuberalis of the Djungarian hamster, Phodopus sungorus. Cell Tissue Res 251:183–187

    Article  PubMed  CAS  Google Scholar 

  • Yasuo S, Nakao N, Ohkura S, Iigo M, Hagiwara S, Goto A, Ando H, Yamamura T, Watanabe M, Watanabe T, Oda S, Maeda K, Lincoln GA, Okamura H, Ebihara S, Yoshimura T (2006) Long-day suppressed expression of type 2 deiodinase gene in the mediobasal hypothalamus of the Saanen goat, a short-day breeder: implication for seasonal window of thyroid hormone action on reproductive neuroendocrine axis. Endocrinology 147:432–440

    Article  PubMed  CAS  Google Scholar 

  • Yasuo S, Yoshimura T, Ebihara S, Korf HW (2009) Melatonin transmits photoperiodic signals through the MT1 melatonin receptor. J Neurosci 29:2885–2889

    Article  PubMed  CAS  Google Scholar 

  • Yasuo S, Yoshimura T, Ebihara S, Korf HW (2010) Photoperiodic control of TSH-beta expression in the mammalian pars tuberalis has different impacts on the induction and suppression of the hypothalamo-hypophysial gonadal axis. J Neuroendocrinol 22:43–50

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura T, Yasuo S, Watanabe M, Iigo M, Yamamura T, Hirunagi K, Ebihara S (2003) Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds. Nature 426:178–181

    Article  PubMed  CAS  Google Scholar 

  • Young RA, Danforth E Jr, Vagenakis AG, Krupp PP, Frink R, Sims EA (1979) Seasonal variation and the influence of body temperature on plasma concentrations and binding of thyroxine and triiodothyronine in the woodchuck. Endocrinology 104:996–999

    Article  PubMed  CAS  Google Scholar 

  • Youngstrom TG, Bartness TJ (1998) White adipose tissue sympathetic nervous system denervation increases fat pad mass and fat cell number. Am J Physiol 275:R1488–R1493

    PubMed  CAS  Google Scholar 

  • Zhang J, Kaasik K, Blackburn MR, Lee CC (2006) Constant darkness is a circadian metabolic signal in mammals. Nature 439:340–343

    Article  PubMed  CAS  Google Scholar 

  • Zucker I, Boshes M (1982) Circannual body weight rhythms of ground squirrels: role of gonadal hormones. Am J Physiol 243:R546–R551

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their helpful suggestions and critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Steinlechner.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherbarth, F., Steinlechner, S. Endocrine mechanisms of seasonal adaptation in small mammals: from early results to present understanding. J Comp Physiol B 180, 935–952 (2010). https://doi.org/10.1007/s00360-010-0498-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-010-0498-2

Keywords

Navigation