Skip to main content
Log in

The vertical lobe of cephalopods: an attractive brain structure for understanding the evolution of advanced learning and memory systems

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

In this review we show that the cephalopod vertical lobe (VL) provides a good system for assessing the level of evolutionary convergence of the function and organization of neuronal circuitry for mediating learning and memory in animals with complex behavior. The pioneering work of JZ Young described the morphological convergence of the VL with the mammalian hippocampus, cerebellum and the insect mushroom body. Studies in octopus and cuttlefish VL networks suggest evolutionary convergence into a universal organization of connectivity as a divergence-convergence (‘fan-out fan-in’) network with activity-dependent long-term plasticity mechanisms. Yet, these studies also show that the properties of the neurons, neurotransmitters, neuromodulators and mechanisms of long-term potentiation (LTP) induction and maintenance are highly variable among different species. This suggests that complex networks may have evolved independently multiple times and that even though memory and learning networks share similar organization and cellular processes, there are many molecular ways of constructing them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

5-HT:

Serotonin

AM:

Amacrine interneuron

fPSP:

Postsynaptic field potential

LFP:

Local field potential

LTD:

Long-term depression

LTP:

Long-term potentiation

LN:

Large efferent neuron

MYA:

Million years ago

NMDAR:

NMDA-like receptors

NO:

Nitric oxide

NOS:

Nitric oxide synthase

OA:

Octopamine

SFL:

Superior frontal lobe

TP:

Tract potential

VL:

Vertical lobe

References

  • Allcock AL, Lindgren A, Strugnell JM (2015) The contribution of molecular data to our understanding of cephalopod evolution and systematics: a review. J Nat Hist 49:1373–1421. doi:10.1080/00222933.2013.825342

    Article  Google Scholar 

  • Amodio A, Fiorito G (2013) Observational and other tupes of learning in octopus. In: Menzel Randolf, Benjamin Paul R (eds) Invertebrate learning and memory. Academic Press, Düsseldorf, pp 293–302

    Chapter  Google Scholar 

  • Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J (2006) The hippocampus book. Oxford University Press, New York

    Book  Google Scholar 

  • Antonov I, Kandel ER, Hawkins RD (2010) Presynaptic and postsynaptic mechanisms of synaptic plasticity and metaplasticity during intermediate-term memory formation in Aplysia. J Neurosci 30:5781–5791. doi:10.1523/jneurosci.4947-09.2010

    Article  CAS  PubMed  Google Scholar 

  • Aronson RB (1991) Ecology, paleobiology and evolutionary constraint in the octopus. Bull Mar Sci 49:245–255

    Google Scholar 

  • Boycott BB, Young JZ (1955) A memory system in Octopus vulgaris Lamarck. Proc R Soc Lond B Biol Sci 143:449–480. doi:10.1098/rspb.1955.0024

    Article  CAS  PubMed  Google Scholar 

  • Brown E, Piscopo S (2013) Synaptic plasticity in cephalopods; more than just learning and memory? Invert Neurosci 13:35–44. doi:10.1007/s10158-013-0150-4

    Article  PubMed  Google Scholar 

  • Bullock TH, Horridge GA (1965) Structure and function in the nervous systems of invertebrates. W. H. Freeman, San Francisco

    Google Scholar 

  • Burke CJ, Huetteroth W, Owald D, Perisse E, Krashes MJ, Das G, Gohl D, Silies M, Certel S, Waddell S (2012) Layered reward signalling through octopamine and dopamine in Drosophila. Nature 492:433–437. doi:10.1038/nature11614

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chamberlain JAJ (1990) Jet propulsion of Nautilus: a surviving example of early Paleoizoic cephalopod locomotor design. Can Jour Zool 68:806–814. doi:10.1139/z90-116

    Article  Google Scholar 

  • Collingridge GL, Peineau S, Howland JG, Wang YT (2010) Long-term depression in the CNS. Nature Rev Neurosci 11:459–473. doi:10.1038/nrn2867

    Article  CAS  Google Scholar 

  • Cook R, Basil J (2013) Flexible spatial orientation and navigational strategies in chambered Nautilus. Ethology 119:77–85. doi:10.1111/eth.12040

    Article  Google Scholar 

  • Crook R, Basil J (2008) A biphasic memory curve in the chambered nautilus, Nautilus pompilius L. (Cephalopoda: Nautiloidea). J Exp Biol 211:1992–1998. doi:10.1242/jeb.020370

    Article  PubMed  Google Scholar 

  • Crook RJ, Hanlon RT, Basil JA (2009) Memory of visual and topographical features suggests spatial learning in nautilus (Nautilus pompilius L.). J Comp Psychol 123:264. doi:10.1037/a0015921

    Article  PubMed  Google Scholar 

  • Dash PK, Hochner B, Kandel ER (1990) Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature 345:718–721

    Article  CAS  PubMed  Google Scholar 

  • Di Cosmo A, Paolucci M, Di Cristo C (2004) N-Methyl-D-aspartate receptor-like immunoreactivity in the brain of Sepia and Octopus. J Comp Neurol 477:202–219. doi:10.1002/cne.20242

    Article  PubMed  Google Scholar 

  • Farris SM (2013) Evolution of complex higher brain centers and behaviors: behavioral correlates of mushroom body elaboration in insects. Brain Behav Evol 82:9–18. doi:10.1159/000352057

    Article  PubMed  Google Scholar 

  • Garthwaite J (2008) Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci 27:2783–2802. doi:10.1111/j.1460-9568.2008.06285.x

    Article  PubMed Central  PubMed  Google Scholar 

  • Ghirardi M, Braha O, Hochner B, Montarolo PG, Kandel ER, Dale N (1992) Roles of PKA and PKC in facilitation of evoked and spontaneous transmitter release at depressed and nondepressed synapses in Aplysia sensory neurons. Neuron 9:479–489. doi:10.1016/0896-6273(92)90185-G

    Article  CAS  PubMed  Google Scholar 

  • Giurfa M (2006) Associative learning: the instructive function of biogenic amines. Curr Biol 16:892. doi:10.1016/j.cub.2006.09.021

    Article  Google Scholar 

  • Glanzman DL (2010) Common mechanisms of synaptic plasticity in vertebrates and invertebrates. Curr Biol 20:31–36. doi:10.1016/j.cub.2009.10.023

    Article  Google Scholar 

  • Grasso FW, Basil JA (2009) The evolution of flexible behavioral repertoires in cephalopod molluscs. Brain Behav Evol 74:231–245. doi:10.1159/000258669

    Article  PubMed  Google Scholar 

  • Gray EG (1970) The fine structure of the vertical lobe of octopus brain. Phil Trans R Soc Lond B 258:379–394

    Article  CAS  Google Scholar 

  • Greenwood S, Shomrat T, Hochner B (2009) The involvement octopamine in short- and long-term plasticity in the octopus vertical lobe. Program No. 890.12.2009 neuroscience meeting planner. Chicago, IL: Society for Neuroscience, (Online)

  • Hanlon RT, Messenger JB (1996) Cephalopod behaviour. Cambridge University Press, Cambridge

    Google Scholar 

  • Haszprunar G, Wanninger A (2012) Molluscs. Curr Biol 22:510–514. doi:10.1016/j.cub.2012.05.039

    Article  Google Scholar 

  • Heisenberg M (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4:266–275. doi:10.1038/nrn1074

    Article  CAS  PubMed  Google Scholar 

  • Hochner B (2010) Functional and comparative assessments of the octopus learning and memory system. Front Biosci 2:764–771

    Article  Google Scholar 

  • Hochner B (2012) An embodied view of octopus neurobiology. Curr Biol 22:887–892. doi:10.1016/j.cub.2012.09.001

    Article  Google Scholar 

  • Hochner B, Shomrat T (2013) The Neurophysiological Basis of Learning and Memory in Advanced Invertebrates. In: Menzel Randolf, Benjamin Paul R (eds) Invertebrate learning and memory. Academic Press, Düsseldorf, pp 303–317

    Chapter  Google Scholar 

  • Hochner B, Shomrat T (2014) The neurophysiological basis of learning and memory in an advanced invertebrate––the octopus. In: Darmaillacq A-S, Dickel L, Mather JA (eds) Cephalopods cognition. Cambridge University Press, Cambridge

    Google Scholar 

  • Hochner B, Klein M, Schacher S, Kandel ER (1986a) Action-potential duration and the modulation of transmitter release from the sensory neurons of Aplysia in presynaptic facilitation and behavioral sensitization. Proc Natl Acad Sci USA 83:8410–8414. doi:10.1073/pnas.83.21.8410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hochner B, Klein M, Schacher S, Kandel ER (1986b) Additional component in the cellular mechanism of presynaptic facilitation contributes to behavioral dishabituation in Aplysia. Proc Natl Acad Sci USA 83:8794–8798

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hochner B, Brown ER, Langella M, Shomrat T, Fiorito G (2003) A learning and memory area in the octopus brain manifests a vertebrate-like long-term potentiation. J Neurophysiol 90:3547–3554. doi:10.1152/jn.00645.2003

    Article  PubMed  Google Scholar 

  • Hochner B, Shomrat T, Fiorito G (2006) The octopus: a model for a comparative analysis of the evolution of learning and memory mechanisms. Biol Bull 210:308–317

    Article  PubMed  Google Scholar 

  • Kandel ER (1976) Cellular basis of behavior: an introduction to behavioral neurobiology. W. H, Freeman Oxford

    Google Scholar 

  • Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038. doi:10.1126/science.1067020

    Article  CAS  PubMed  Google Scholar 

  • Kandel E, Schwartz J, Jessell T, Siegelbaum S, Hudspeth AJ (2012) Principles of neural science, 5th edn. McGraw-Hill, New York

    Google Scholar 

  • Kemenes I, Kemenes G, Andrew RJ, Benjamin PR, O’Shea M (2002) Critical time-window for NO-cGMP-dependent long-term memory formation after one-trial appetitive conditioning. J Neurosci 22:1414–1425

    CAS  PubMed  Google Scholar 

  • Kocot KM, Cannon JT, Todt C, Citarella MR, Kohn AB, Meyer A, Santos SR, Schander C, Moroz LL, Lieb B, Halanych KM (2011) Phylogenomics reveals deep molluscan relationships. Nature 477:452–456. doi:10.1038/nature10382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Korshunova TA, Balaban PM (2014) Nitric oxide is necessary for long-term facilitation of synaptic responses and for development of context memory in terrestrial snails. Neuroscience 266:127–135. doi:10.1016/j.neuroscience.2014.02.004

    Article  CAS  PubMed  Google Scholar 

  • Kröger B, Vinther J, Fuchs D (2011) Cephalopod origin and evolution: a congruent picture emerging from fossils, development and molecules. BioEssays 33:602–613. doi:10.1002/bies.201100001

    Article  PubMed  Google Scholar 

  • Lima PA, Nardi G, Brown ER (2003) AMPA/kainate and NMDA-like glutamate receptors at the chromatophore neuromuscular junction of the squid: role in synaptic transmission and skin patterning. Eur J Neurosci 17:507–516. doi:10.1046/j.1460-9568.2003.02477.x

    Article  PubMed  Google Scholar 

  • Lin XY, Glanzman DL (1994) Hebbian induction of long-term potentiation of Aplysia sensorimotor synapses: partial requirement for activation of an NMDA-related receptor. Proc Biol Sci 255:215–221. doi:10.1098/rspb.1994.0031

    Article  CAS  PubMed  Google Scholar 

  • Lindgren AR, Giribet G, Nishiguchi MK (2004) A combined approach to the phylogeny of Cephalopoda (Mollusca). Cladistics 20:454–486. doi:10.1111/j.1096-0031.2004.00032.x

    Article  Google Scholar 

  • Maldonado H (1965) The positive and negative learning process in Octopus vulgaris Lamarck. Influence of the vertical and median superior frontal lobes. Z Vergl Physiol 51:185–203

    Article  Google Scholar 

  • Mauelshagen J, Sherff CM, Carew TJ (1998) Differential induction of long-term synaptic facilitation by spaced and massed applications of serotonin at sensory neuron synapses of Aplysia californica. Learn Mem 5:246–256. doi:10.1101/lm.5.3.246

    PubMed Central  CAS  PubMed  Google Scholar 

  • Menzel R, Benjamin P (2013) Invertebrate learning and memory. Academic Press, Düsseldorf

    Google Scholar 

  • Montarolo PG, Kandel ER, Schacher S (1988) Long-term heterosynaptic inhibition in Aplysia. Nature 333:171–174. doi:10.1038/333171a0

    Article  CAS  PubMed  Google Scholar 

  • Moroz LL, Kohn AB (2011) Parallel evolution of Nitric oxide signaling: diversity of synthesis and memory pathways. Front Biosci (Landmark edition) 16:2008–2051

    Article  CAS  Google Scholar 

  • Nixon M, Young JZ (2003) The brain and lives of cephalopods. Oxford University Press, Oxford

    Google Scholar 

  • Packard A (1972) Cephalopods and fish: the limits of convergence. Biol Rev 47:241–307. doi:10.1111/j.1469-185X.1972.tb00975.x

    Article  CAS  Google Scholar 

  • Padamsey Z, Emptage N (2014) Two sides to long-term potentiation: a view towards reconciliation. Phil Trans R Soc Lond B Biol Sci 369:20130154. doi:10.1098/rstb.2013.0154

    Article  Google Scholar 

  • Perry CJ, Barron AB (2013) Neural mechanisms of reward in insects. Annu Rev Entomol 58:543–562. doi:10.1146/annurev-ento-120811-153631

    Article  CAS  PubMed  Google Scholar 

  • Prast H, Philippu A (2001) Nitric oxide as modulator of neuronal function. Prog Neurobiol 64:51–68. doi:10.1016/S0301-0082(00)00044-7

    Article  CAS  PubMed  Google Scholar 

  • Robertson JD, Bonaventura J, Kohm AP (1994) Nitric oxide is required for tactile learning in Octopus vulgaris. Proc Biol Sci 256:269–273. doi:10.1098/rspb.1994.0080

    Article  CAS  PubMed  Google Scholar 

  • Robertson JD, Bonaventura J, Kohm A, Hiscat M (1996) Nitric oxide is necessary for visual learning in Octopus vulgaris. Proc Biol Sci 263:1739–1743. doi:10.1098/rspb.1996.0254

    Article  CAS  PubMed  Google Scholar 

  • Sanders GD (1975) The Cephalopods. In: Corning WC, Dyal JA, Willows AOD (eds) Invertebrate learning, vol 3 cephalopods and echinoderms plenum press, New York, pp 139–145

  • Schultz W (2010) Dopamine signals for reward value and risk: basic and recent data. Behav Brain Funct 6:24. doi:10.1186/1744-9081-6-24

    Article  PubMed Central  PubMed  Google Scholar 

  • Shigeno S, Ragsdale CW (2015) The gyri of the octopus vertical lobe have distinct neurochemical identities. J Comp Neurol 523:1297–1317. doi:10.1002/cne.23755

    Article  CAS  PubMed  Google Scholar 

  • Shomrat T, Zarrella I, Fiorito G, Hochner B (2008) The octopus vertical lobe modulates short-term learning rate and uses LTP to acquire long-term memory. Curr Biol 18:337–342. doi:10.1016/j.cub.2008.01.056

    Article  CAS  PubMed  Google Scholar 

  • Shomrat T, Feinstein N, Klein M, Hochner B (2010) Serotonin is a facilitatory neuromodulator of synaptic transmission and “reinforces” long-term potentiation induction in the vertical lobe of Octopus vulgaris. Neuroscience 169:52–64. doi:10.1016/j.neuroscience.2010.04.050

    Article  CAS  PubMed  Google Scholar 

  • Shomrat T, Graindorge N, Bellanger C, Fiorito G, Loewenstein Y, Hochner B (2011) Alternative sites of synaptic plasticity in two homologous fan-out fan-in learning and memory networks. Curr Biol 21:1773–1782. doi:10.1016/j.cub.2011.09.011

    Article  CAS  PubMed  Google Scholar 

  • Smith SA, Wilson NG, Goetz FE (2011) Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature 480:364–367. doi:10.1038/nature10526

    Article  CAS  PubMed  Google Scholar 

  • Stöger I, Sigwart JD, Kano Y, Knebelsberger T, Marshall BA, Schwabe E, Schrödl M (2013) The continuing debate on deep molluscan phylogeny: evidence for serialia (mollusca, monoplacophora + polyplacophora). Biomed Res Int 2013:407072. doi:10.1155/2013/407072

    Article  PubMed Central  PubMed  Google Scholar 

  • Strugnell J, Norman M, Jackson J, Drummond AJ, Cooper A (2005) Molecular phylogeny of coleoid cephalopods (Mollusca: Cephalopoda) using a multigene approach; the effect of data partitioning on resolving phylogenies in a Bayesian framework. Mol Phylogenet Evol 37:426–441. doi:10.1016/j.ympev.2005.03.020

    Article  CAS  PubMed  Google Scholar 

  • Strugnell J, Jackson J, Drummond AJ, Cooper A (2006) Divergence time estimates for major cephalopod groups: evidence from multiple genes. Cladistics 22:89–96. doi:10.1111/j.1096-0031.2006.00086.x

    Article  Google Scholar 

  • Susswein AJ, Chiel HJ (2012) Nitric oxide as a regulator of behavior: new ideas from Aplysia feeding. Prog Neurobiol 97:304–317. doi:10.1016/j.pneurobio.2012.03.004

    Article  CAS  PubMed  Google Scholar 

  • Sutton MA, Ide J, Masters SE, Carew TJ (2002) Interaction between amount and pattern of training in the induction of intermediate- and long-term memory for sensitization in Aplysia. Learn Mem 9:29–40. doi:10.1101/lm.44802

    Article  PubMed Central  PubMed  Google Scholar 

  • Turchetti-Maia A, Shomrat T, Hochner B (2014) Nitric oxide synthase is involved in maintenance but not in induction of activity-dependent LTP in the vertical lobe of the octopus. Program No. 561.04.2014 neuroscience meeting planner. Washington, DC: Society for Neuroscience (Online)

  • Turrigiano GG (1999) Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci 22:221–227. doi:10.1016/s0166-2236(98)01341-1

    Article  CAS  PubMed  Google Scholar 

  • Vapnik VN (1998) Statistical learning theory. Wiley, New York

    Google Scholar 

  • Vehovszky Á, Szabó H, Elliott CJ (2004) Octopamine-containing (OC) interneurons enhance central pattern generator activity in sucrose-induced feeding in the snail Lymnaea. J Comp Physiol A 190:837–846. doi:10.1007/s00359-004-0539-y

    Article  CAS  Google Scholar 

  • Waddell S (2013) Reinforcement signalling in Drosophila; dopamine does it all after all. Curr Opin Neurobiol 23:324–329. doi:10.1016/j.conb.2013.01.005

    Article  CAS  PubMed  Google Scholar 

  • Wentzell MM, Martínez-Rubio C, Miller MW, Murphy AD (2009) Comparative neurobiology of feeding in the opisthobranch sea slug, aplysia, and the pulmonate snail, helisoma: evolutionary considerations. Brain Behav Evol 74:219–230. doi:10.1159/000258668

    Article  PubMed Central  PubMed  Google Scholar 

  • Wright WG (1998) Evolution of nonassociative learning: behavioral analysis of a phylogenetic lesion. Neurobiol Learn Mem 69:326–327. doi:10.1006/nlme.1998.3829

    Article  CAS  PubMed  Google Scholar 

  • Wright WG, Kirschman D, Rozen D, Maynard B (1996) Phylogenetic analysis of learning-related neuromodulation in molluscan mechanosensory neurons. Evolution 50:2248–2263. doi:10.2307/2410695

    Article  Google Scholar 

  • Yeckel MF, Kapur A, Johnston D (1999) Multiple forms of LTP in hippocampal CA3 neurons use a common postsynaptic mechanism. Nature Neurosci 2:625–633. doi:10.1038/10180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Young JZ (1971) The anatomy of the nervous system of Octopus vulgaris. Clarendon Press, Oxford

    Google Scholar 

  • Young JZ (1979) The nervous system of Loligo: V. The vertical lobe complex. Phil Trans R Soc Lond B Biol Sci 285:311–354. doi:10.1098/rstb.1979.0008

    Article  Google Scholar 

  • Young J (1988) Evolution of the cephalopod brain. In: Clarke MR, Trueman ER (eds) The Mollusca vol. 12 Paleontology and Neontology of Cephalopods. Elsevier, Amsterdam. pp 215–228

  • Young JZ (1991) Computation in the learning-system of cephalopods. Biol Bull 180:200–208

    Article  Google Scholar 

  • Young JZ (1995) Emerging ideas on memory in multiple matrices and with cyclic re-excitation. In: Elsner N, Menzel R, Thieme G (eds) Learning and Memory. vol 1. Proceed 23rd Göttingen Neurobiology Conf. Stuttgart, New York. pp 61–82

Download references

Acknowledgments

Our research is supported by the United States–Israel Binational Science Foundation (Grant Numbers 2011466) to BH and JB, the Israel Science Foundation (Grant Numbers 1425-11) to BH and the Smith Family Laboratory at the Hebrew University. ALTM was supported by the Edmond and Lily Safra Center for Brain Sciences of the Hebrew University. We thank Jenny Kien for editorial assistance and suggestions. All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Hochner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shomrat, T., Turchetti-Maia, A.L., Stern-Mentch, N. et al. The vertical lobe of cephalopods: an attractive brain structure for understanding the evolution of advanced learning and memory systems. J Comp Physiol A 201, 947–956 (2015). https://doi.org/10.1007/s00359-015-1023-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-015-1023-6

Keywords

Navigation