Skip to main content

Advertisement

Log in

Physiology and antennal lobe projections of olfactory receptor neurons from sexually isomorphic sensilla on male Heliothis virescens

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The neurophysiology and antennal lobe projections of olfactory receptor neurons (ORNs) within sexually isomorphic short trichoid sensilla of male Heliothis virescens (Noctuidae: Lepidoptera) were investigated using cut-sensillum recording and cobalt-lysine staining. A total of 202 sensilla were sorted into 14 possible sensillar categories based on odor responses and physiology of ORNs within. Seventy-two percent of the sensilla identified contained ORNs stimulated by conspecific odors. In addition, a large number of ORNs were specifically sensitive to ß-caryophyllene, a plant-derived volatile (N = 41). Axons originating from ORNs associated with individual sensilla were stained with cobalt lysine (N = 67) and traced to individual glomeruli in the antennal lobe. ORNs with responses to female sex pheromone components exhibited similar axonal projections as those previously described from ORNs in long sensilla trichodea in male H. virescens. Antennal lobe axonal arborizations of ORNs sensitive to hairpencil components were also located in glomeruli near the base of the antennal nerve, whilst those sensitive to plant odorants projected to more medial glomeruli. Comparisons with ORNs described from female H. virescens supports the notion that glomeruli at the base of the antennal nerve are associated with conspecific and interspecific odorants, whereas those located medially are associated with plant volatiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AL:

Antennal lobe

AN:

Antennal nerve

D:

Dorsal

E2-6:Ald:

(E)-2-hexenal

EAG:

Electroantennogram

16:OH:

Hexadecanol

16:OAc:

Hexadecanyl acetate

IPV:

Induced plant volatile

LFG:

Large female glomeruli

L:

Lateral

LTS:

Long trichoid sensillum

MGC:

Macroglomerulur complex

M:

Medial

18:OH:

Octadecanol

18:OAc:

Octadecanyl acetate

ORN:

Olfactory receptor neuron

STS:

Short trichoid sensillum

SSR:

Single sensillum recording

Z9-16:Ald:

(Z)-9-hexadecenal

Z11-16:Ald:

(Z)-11-hexadecenal

Z9-14:Ald:

(Z)-9-tetradecenal

Z11-16:OH:

(Z)-11-hexadecen-1-ol

Z11-16:OAc:

(Z)-11-hexadecenyl acetate

Z3-6:OH:

(Z)-3-hexen-1-ol

Z3-6:OAc:

(Z)-3-hexenyl acetate

References

  • Almaas TJ, Mustaparta H (1990) Pheromone reception in tobacco budworm moth, Heliothis virescens. J Chem Ecol 16:1331–1347

    Article  CAS  Google Scholar 

  • Almaas TJ, Mustaparta H (1991) Heliothis virescens: Response characteristics of receptor neurons in sensilla trichoidea type 1 and type 2. J Chem Ecol 17:953–972

    Article  CAS  Google Scholar 

  • Anton S, Homberg U (1999) Antennal lobe structures. In: Hansson BS (ed) Insect olfaction. Springer, Heidelberg, pp 97–124

    Google Scholar 

  • Baker TC, Ochieng’ SA, Cossé AA, Lee SG, Todd JL, Quero C, Vickers NJ (2004) A comparison of responses from olfactory receptor neurons of Heliothis subflexa and Heliothis virescens to components of their sex pheromone. J Comp Physiol A 190:155–165

    Article  CAS  Google Scholar 

  • Berg BG, Almaas TJ, Bjaalie JG, Mustaparta H (1998) The macroglomerular complex of the antennal lobe in the tobacco budworm moth Heliothis virescens: specified subdivision in four compartments according to information about biologically significant compounds. J Comp Physiol A 183:669–682

    Article  Google Scholar 

  • Berg BG, Galizia CG, Brandt R, Mustaparta H (2002) Digital atlases of the antennal lobe in two species of tobacco budworm moths, the oriental Helicoverpa assulta (Male) and the American Heliothis virescens (Male and Female). J Comp Neurol 446:123–134

    Article  PubMed  Google Scholar 

  • Birch MC (1975) Aphrodisiac pheromones in insects. In: Birch MC (ed) Pheromones. Elsevier, New York, pp 115–134

    Google Scholar 

  • Birch MC, Hefetz A (1987) Extrusible organs in male moths and their role in courtship behavior. Bull Ent Soc Am 33:222–229

    Google Scholar 

  • Birch MC, Poppy GM, Baker TC (1990) Scents and eversible scent structures of male moths. Annu Rev Entomol 35:25–58

    Article  CAS  Google Scholar 

  • Bruce TJ, Cork A (2001) Electrophysiological and behavioral responses of female Helicoverpa armigera to compounds identified in flowers of African marigold, Tagetes erecta. J Chem Ecol 27:1119–1131

    Article  PubMed  CAS  Google Scholar 

  • Callahan FE, Vogt RG, Tucker ML, Dickens JC, Mattoo AK. (2000) High level expression of ‘male specific’ pheromone binding proteins (PBPs) in the antennae of female noctuiid moths. Insect Biochem Mol Biol. 30:507–514

    Article  PubMed  CAS  Google Scholar 

  • Cardé RT (1984) Chemo-orientation in flying insects. In: Bell WJ, Cardé RT (eds) Chemical ecology of insects, 1st edn. Chapman and Hall, London, pp 111–124

    Google Scholar 

  • Cardé RT, Baker TC (1984) Sexual communication with pheromones. In: Bell WJ, Cardé RT (eds) Chemical ecology of insects, 1st edn. Chapman and Hall, London, pp 355–386

    Google Scholar 

  • Christensen TA, Hildebrand JG (2002) Pheromonal and host-odor processing in the insect antennal lobe: how different? Curr Opin Neurobiol 12:393–399

    Article  PubMed  CAS  Google Scholar 

  • Christensen TA, Pawlowski VM, Lei H, Hildebrand JG (2000) Multi-unit recordings reveal context-dependent modulation of synchrony in odor-specific neural ensembles. Nat Neurosci 3:927–931

    Article  PubMed  CAS  Google Scholar 

  • Cunningham JP, Moore CJ, Zalucki MP, West SA (2004) Learning, odour preference and flower foraging in moths. J Exp Biol 207:87–94

    Article  PubMed  Google Scholar 

  • De Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:557–580

    Article  Google Scholar 

  • den Otter CJ, Schuil HA, Sander-van Oosten A (1978) Reception of host-plant odours and female sex pheromone in Adoxophyes orana (Lepidoptera: Tortricidae): electrophysiology and morphology. Entomol Exp Appl 24:370–378

    Article  Google Scholar 

  • Dickens JC, Visser JH, van der Pers JNC (1993) Detection and deactivation of pheromone and plant odor components by beet armyworm, Spodoptera exigua (hübner) (Leipodoptera: Noctuidae). J Insect Physiol 39:503–516

    Article  CAS  Google Scholar 

  • Galizia CG, Sachse S, Mustaparta H (2000) Calcium responses to stimulation with pheromones and plant odours in the antennal lobe of the male and female moth Heliothis virescens. J Comp Physiol A 186:1049–1063

    Article  PubMed  CAS  Google Scholar 

  • Gödde J (1989) Vibrating glass stylets: tools for precise microsurgery on cuticular structures. J Neurosci Methods 29:77–83

    Article  PubMed  Google Scholar 

  • Hansson BS (1997) Antennal lobe projections of pheromone-specific olfactory receptor neurons in moths. In: Cardé RT, Minks AK (eds) Insect pheromone research: new directions. Chapman and Hall, New York, pp 164–183

    Google Scholar 

  • Hansson BS, Anton S (2000) Function and morphology of the antennal lobe: new developments. Annu Rev Entomol 45:203–231

    Article  PubMed  CAS  Google Scholar 

  • Hansson BS, Anton S, Almaas TJ (1995) Antennal lobe projection patterns of pheromone detecting receptor neurons in the male Heliothis virescens (Lepidoptera: Noctuidae). J Comp Physiol A 177:535–543

    Article  CAS  Google Scholar 

  • Hansson BS, Christensen TA (1999) Functional characteristics of the antennal lobe. In: Hansson BS (ed) Insect Olfaction. Springer, Heidelberg, pp 125–163

    Google Scholar 

  • Hansson BS, Löfqvist J, Van der Pers JNC (1989) Comparison of male and female olfactory cell response to pheromone compounds and plant volatiles in the turnip moth, Agrotis segetum. Physiol Entomol 14:147–155

    CAS  Google Scholar 

  • Hartlieb EP, Anderson P (1999) Olfactory-released behaviors. In: Hansson BS (ed) Insect olfaction. Springer, Heidelberg, pp 315–349

    Google Scholar 

  • Hartlieb E, Rembold H (1996) Behavioral response of female Helicoverpa (Heliothis) armigera HB. (Lepidoptera: Noctuidae) moths to synthetic pigeonpea (Cajanus cajan L.) kairomone. J Chem Ecol 22:821–837

    Article  CAS  Google Scholar 

  • Hartlieb EP, Anderson P, Hansson BS (1999) Appetite learning of odours with different behavioural meaning in moths. Physiol Behav 67:671–677

    Article  PubMed  CAS  Google Scholar 

  • Hillier NK, Vickers NJ (2004) The role of heliothine hairpencil compounds in female Heliothis virescens (Lepidoptera: Noctuidae) behavior and mate acceptance. Chem Senses 29:499–511

    Article  PubMed  CAS  Google Scholar 

  • Hillier NK, Kelly D, Vickers NJ (2006b) Detection of behaviorally antagonistic pheromone components by a male moth olfactory sensillum. J Insect Sci 7:04

    Google Scholar 

  • Hillier NK, Kleineidam CK, Vickers NJ (2006a) Physiology and glomerular projections of olfactory receptor neurons on the antenna of female Heliothis virescens (Lepidoptera: Noctuidae) responsive to behaviorally relevant odors. J Comp Phys A 192:199–219

    Article  CAS  Google Scholar 

  • Kaissling K-E (1974) Sensory transduction in insect olfactory receptors. In: Jaenicke L (ed) Biochemistry of sensory functions. Springer, Heidleberg, pp 243–273

    Google Scholar 

  • Kalinova B, Hoskovec M, Liblikas I, Unelius CR, Hansson BS (2001) Detection of sex pheromone components in Manduca sexta (L.). Chem Senses 26:1175–1186

    Article  PubMed  CAS  Google Scholar 

  • Kennedy JS (1977) Olfactory responses to distant plants and other sources. In: Shorey HH, McKelvey JI Jr (eds) Chemical control of insect behaviour. Wiley, New York, pp 67–91

    Google Scholar 

  • Kennedy JS, Marsh D (1974) Pheromone-regulated anemotaxis in flying moths. Science 184:999–1001

    Article  PubMed  CAS  Google Scholar 

  • Kennedy JS, Ludlow AR, Sanders CJ (1980) Guidance system used in moth sex attraction. Nature 295:475–477

    Article  Google Scholar 

  • Kennedy JS, Ludlow AR, Sanders CJ (1981) Guidance of flying male moths by wind-borne sex pheromone. Physiol Entomol 6:395–412

    Google Scholar 

  • Klun JA, Plimmer JR, Bierl-Leonhardt BA, Sparks AN, Chapman OL (1979) Trace chemicals: the essence of sexual communication systems in Heliothis species. Science 204:1328–1330

    Article  CAS  Google Scholar 

  • Klun JA, Plimmer JR, Bierl-Leonhardt BA, Sparks AN, Primiani M, Chapman OL, Lee GH, Lepone G (1980a) Sex pheromone chemistry of female corn earworm moth, Heliothis zea. J Chem Ecol 6:165–175

    Article  CAS  Google Scholar 

  • Klun JA, Plimmer JR, Bierl-Leonhardt BA, Sparks AN, Primiani M, Chapman OL, Lepone G, Lee GH (1980b) Sex pheromone chemistry of female tobacco budworm moth, Heliothis virescens. J Chem Ecol 6:177–183

    Article  CAS  Google Scholar 

  • Krieger J, Raming K, Dewer YME, Bette S, Conzelmann S, Breer H. (2002) A divergent gene family encoding candidate olfactory receptors of the moth Heliothis virescens. Eur J Neurosci 16:619–628

    Article  PubMed  Google Scholar 

  • Landolt PJ, Phillips TW (1997) Host plant influences on sex pheromone behavior of phytophagous insects. Annu Rev Entomol 42:371–391

    Article  PubMed  CAS  Google Scholar 

  • Lee S-G, Carlsson MA, Hansson BS, Todd JL, Baker TC (2006a). Antennal lobe projection destinations of Helicoverpa zea male olfactory receptor neurons responsive to heliothine sex pheromone components. J Comp Physiol A 192:351–363

    Article  CAS  Google Scholar 

  • Lee S-G, Vickers NJ, Baker TC (2006b) Glomerular targets of Heliothis subflexa male olfactory receptor neurons housed within long trichoid sensilla. Chem Senses 31:821–834

    Article  PubMed  Google Scholar 

  • Lei H, Christensen TA, Hildebrand JG (2002) Local inhibition modulates odor-evoked synchronization of glomerulus-specific output neurons. Nat Neurosci 5:557–565

    Article  PubMed  CAS  Google Scholar 

  • Light DM, Flath RA, Buttery RG, Zalom FG, Rice RE, Dickens JC, Jang EB (1993) Host-plant green-leaf volatiles synergize the synthetic sex pheromones of the corn earworm and codling moth (Lepidoptera). Chemoecol 4:145–152

    Article  CAS  Google Scholar 

  • Mitchell ER, Tingle FC, Heath RR (1991) Flight activity of Heliothis virescens (F.) females (Lepidotera: Noctuidae) with reference to host-plant volatiles. J Chem Ecol 17:259–267

    Article  CAS  Google Scholar 

  • Murlis J, Elkinton JS, Cardé RT (1992) Odour plumes and how insects use them. Annu Rev Entomol 37:505–532

    Article  Google Scholar 

  • Ochieng’ SA, Anderson P, Hansson BS (1995) Antennal lobe projection patterns of olfactory receptor neurons involved in sex pheromone detection by Spodoptera littoralis (Lepidoptera: Noctuidae). Tissue Cell 27:221–232

    Article  CAS  Google Scholar 

  • Ochieng’ SA, Park KC, Baker TC (2002) Host plant volatiles synergize responses of sex pheromone-specific olfactory receptor neurons in male Helicoverpa zea. J Comp Physiol 188:325–333

    Article  CAS  Google Scholar 

  • Ramaswamy SB, Randle JR, Ma WF (1985) Field evaluation of the sex pheromone responses of male Heliothis virescens (Lepidoptera: Noctuidae) in cone traps. Environ Entomol 14:293–296

    CAS  Google Scholar 

  • Roelofs WL, Hill AS, Cardé RT, Baker TC (1974) Two sex pheromone components of the tobacco budworm moth, Heliothis virescens. Life Sci 14:1555–1562

    Article  PubMed  CAS  Google Scholar 

  • Røstelien T, Borg-Karlson A-K, Fäldt J, Jacobson U, Mustaparta H (2000) The plant sesquiterpene germacrene D specifically activates a major type of antennal receptor neuron of the tobacco budworm moth Heliothis virescens. Chem Senses 25:141–148

    Article  PubMed  Google Scholar 

  • Røstelien T, Stranden M, Borg-Karlson A-K, Mustaparta H (2005) Olfactory receptor neurons in two heliothine moth species responding selectively to aliphatic green leaf volatiles, aromatic compounds, monoterpenes and sesquiterpenes of plant origin. Chem Senses 30:443–461

    Article  PubMed  Google Scholar 

  • Shorey HH, Hale RL (1965) Mass-rearing of the larvae of nine noctuid species on a simple artificial medium. J Econ Entomol 58:522–524

    Google Scholar 

  • Skiri HT, Galizia CG, Mustaparta H (2004) Representation of primary plant odorants in the antennal lobe of the moth Heliothis virescens using calcium imaging. Chem Senses 29:253–267

    Article  PubMed  CAS  Google Scholar 

  • Steinbrecht RA (1996) Structure and function of insect olfactory sensilla. Ciba Found Symp 200:158–174

    PubMed  CAS  Google Scholar 

  • Stranden M, Liblikas I, König WA, Almaas TJ, Borg-Karlson A-K, Mustaparta H. (2003a) (-)-Germacrene D receptor neurones in three species of heliothine moths: structure-activity relationships. J Comp Physiol A 189:563–577

    Article  CAS  Google Scholar 

  • Stranden M, Røstlien T, Liblikas I, Almaas TJ, Borg-Karlson A-K, Mustaparta H. (2003b) Receptor neurons in three heliothine moths responding to floral and inducible plant volatiles. Chemoecology 13:143–154

    Article  CAS  Google Scholar 

  • Teal PEA, Tumlinson JH (1989) Isolation, identification and biosynthesis of compounds produced by male hairpencil glands of Heliothis virescens (F.) (Lepidoptera: Lepidoptera). J Chem Ecol 15:413–427

    Article  CAS  Google Scholar 

  • Teal PEA, Tumlinson JH, Heath RR (1986) Chemical and behavioral analyses of volatile sex pheromone components released by calling Heliothis virescens (F.) females (Lepidoptera: Noctuidae). J Chem Ecol 12:107–125

    Article  CAS  Google Scholar 

  • Timm F (1958) Zur Histochemie der Schwermetalle. Das sulfide-Silber-Verfahren. Dtsch Z Gesamte Gerichtl Med 46:706–711

    Article  PubMed  CAS  Google Scholar 

  • Tingle FC, Heath RR, Mitchell ER (1989) Flight response of Heliothis subflexa (gn.) females (Lepidoptera: Noctuidae) to an attractant from groundcherry, Physalis angulata L. J Chem Ecol 15:221–231

    Article  Google Scholar 

  • Tingle FC, Mitchell ER (1992) Attraction of Heliothis virescens (F.) (Lepidoptera: Noctuidae) to volatiles from extracts of cotton flowers. J Chem Ecol 18:907–914

    Article  Google Scholar 

  • Todd JL, Baker TC (1996) Antennal lobe partitioning of behaviorally active odors in female cabbage looper moths. Naturwissenschaften 83:324–326

    CAS  Google Scholar 

  • Todd JL, Anton S, Hansson BS, Baker TC (1995) Functional organization of the macroglomerular complex related to behaviourally expressed olfactory redundancy in male cabbage looper moths. Physiol Entomol 20:349–361

    Google Scholar 

  • Todd JL, Baker TC (1999) Function of peripheral olfactory organs. In: Hansson BS (ed) Insect olfaction. Springer, Heidelberg, pp 67–96

    Google Scholar 

  • Van der Pers J, den Otter CJ (1978) Single cell responses from olfactory receptors of small ermine moths to sex-attractants. J Insect Physiol 24:337–343

    Article  Google Scholar 

  • Vetter RS, Baker TC (1983) Behavioral responses of male Heliothis virescens in a sustained-flight tunnel to combinations of seven compounds identified from female sex pheromone glands. J Chem Ecol 9:747–759

    Article  CAS  Google Scholar 

  • Vickers NJ, Baker TC (1992) Male Heliothis virescens maintain upwind flight in response to experimentally pulsed filaments of their sex pheromone (Lepidoptera: Noctuidae). J Insect Behav 5:669–687

    Article  Google Scholar 

  • Vickers NJ, Baker TC (1994) Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths. Proc Natl Acad Sci 91:5756–5760

    Article  PubMed  CAS  Google Scholar 

  • Vickers NJ, Christensen TA (2003) Functional divergence of spatially conserved glomeruli in two related moth species. Chem Senses 28:325–338

    Article  PubMed  Google Scholar 

  • Vickers NJ, Christensen TA, Mustaparta H, Baker TC (1991) Chemical communication in heliothine moths. III. Flight behavior of male Helicoverpa zea and Heliothis virescens in response to varying ratios of intra- and interspeci?c sex pheromone components. J Comp Physiol A 169:275–280

    Article  Google Scholar 

  • Vickers NJ, Christensen TA, Hildebrand JG (1998) Combinatorial odor discrimination in the brain: attractive and antagonist odor blends are represented in distinct combinations of uniquely identifiable glomeruli. J Comp Neurol 400:35–36

    Article  PubMed  CAS  Google Scholar 

  • Visser JH (1986) Host odor perception in phytophagous insects. Ann Rev Entomol. 31:121–144

    Article  Google Scholar 

Download references

Acknowledgments

We thank K. Iceman and M. Grimes-Graeme for assistance with maintaining the H. virescens colony. We are grateful to Dr. R. Raguso Dr. J. Tumlinson and for kindly providing hairpencil stock solutions. We also thank Dr. S.G. Lee and Dr. T.C. Baker for advice with the cobalt–lysine staining technique. This material is based upon work supported by the National Science Foundation under Grant No. 0416861 (to NJV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Hillier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig9

Cobalt lysine stain, 3-D reconstruction and ORN responses from male Heliothis virescens type 1 sensillum. a 3-D reconstruction of an ORN glomerular projection from a type 1 sensillum. This ORN exhibited a uniglomerular arborization in glomerulus 24, located medially of the DM glomerulus of the MGC (N=13). b Dose-response curves from ORNs in type 1 sensilla (N=19). Physiology and glomerular projections are consistent with description of this sensillar type in Hillier et al. (2006a,b). c Cobalt lysine stain of an ORN glomerular projection from a type 1 sensillum. This ORN exhibited a uniglomerular arborization in glomerulus 24, located medially of the DM glomerulus of the MGC (N=13). d ORN response profile (original spike trains) from a type 1 sensillum, responding primarily to male-produced hairpencil components 18:OAc and 16:OAc, and an interspecific antagonist, Z11-16:OAc (6 second total recording time, stimulus delivery 3 x 100ms pulses). Dorsal, D; Lateral, L. Scale bars = 100μm (JPG 143 kb)

Fig10

Cobalt lysine stain, 3-D reconstruction and ORN responses from male H. virescens type 3 sensillum. ORN physiology and glomerular targets from this sensillar type resemble previously described type ‘B’ sensilla from H. virescens LTS (Almaas and Mustaparta 1990; Almaas and Mustaparta 1991, Baker et al. 2004). a-b Cobalt lysine stain and 3-D reconstruction of an ORN glomerular projection from a type 3 sensillum. Staining of this ORN revealed a uniglomerular arborization in the DM glomerulus of the MGC (N=13). c ORN response profile (original spike trains) from a type 3 sensillum, responding primarily to Z9-14:Ald (6 second total recording time, stimulus delivery 3 x 100ms pulses). d Dose-response curves from ORNs in type 3 sensilla (N=26) stimulated with Z9-14:Ald. e-g Example of a multiglomerular double stain and 3-D reconstruction indicating axons projecting to DM and glomerulus 57 (N=6). This secondary projection to glomerulus 57 appears to arborize within the posterior complex structure described from other heliothine species (Lee et al. 2006a,b). Dorsal, D; Lateral, L. Scale bars = 100μm (JPG 174 kb)

Fig11

3-D reconstruction, cobalt lysine stain and ORN responses from male H. virescens type 26M sensillum. ORN physiology and glomerular targets from this sensillar type resemble type ‘A’ sensilla from H. virescens LTS (Almaas and Mustaparta 1990; Almaas and Mustaparta 1991, Baker et al. 2004). a An ORN exhibiting a multiglomerular double stain and 3-D reconstruction indicating axons projecting to the cumulus and with a second axon projecting to glomerulus 54 (N=3). Glomerulus 54 appears present within a ‘posterior complex’ structure described from other heliothine species (Lee et al. 2006a,b). b Dose-response curves from ORNs in type 26M sensilla (N=15) stimulated with Z11-16:Ald. c-d Cobalt lysine stain and 3-D reconstruction of a uniglomerular ORN arborization in the cumulus glomerulus of the MGC (N=7). e ORN response profile (original spike trains) from a type 26M sensillum, responding primarily to Z11-16:Ald (6 second total recording time, stimulus delivery 3 x 100ms pulses). Dorsal, D; Lateral, L. Scale bars = 100μm (JPG 106 kb)

Fig12

3-D reconstruction, ORN responses and cobalt lysine staining from male H. virescens type 27M sensillum. ORN physiology and glomerular targets from this sensillar type resemble type ‘C’ sensilla from H. virescens LTS (Almaas and Mustaparta 1990; Almaas and Mustaparta 1991, Baker et al. 2004). a 3-D reconstruction of an ORN glomerular projection from a type 27M sensillum. Multiglomerular arborizations in AM and VM glomeruli of the MGC (N=1). b ORN response profile (original spike trains) from a type 27M sensillum, responding to Z11-16:OAc, Z11-16:OH and weakly to Z9-14:Ald (6 second total recording time, stimulus delivery 3 x 100ms pulses). This particular cell exhibited very little response to Z9-14:Ald at 100μg stimulus load. No concentration series was constructed for this sensillum type (N=3). c-d Cobalt lysine stain showing ORN arborizations within the AM and VM glomeruli. Dorsal, D; Lateral, L. Scale bars = 100μm (JPG 163 kb)

Fig13

Cobalt lysine stain, 3-D reconstruction and ORN responses from male H. virescens type 13 sensillum. a-c Cobalt lysine stain and 3-D reconstruction of an ORN glomerular projection from a type 13 sensillum to glomeruli 6 and 14 (N=2). Arborization pattern observed is consistent with similar observations from type 13 sensilla in female H. virescens. d ORN response profile (original spike trains) from a type 13 sensillum, responding primarily to linalool, ß-caryophyllene, and much more weakly to Z3-6:OAc and Z3-6:OH (6 second total recording time, stimulus delivery 3 x 100ms pulses). e Dose-response curves from ORNs in type 13 sensilla (N=5) showing relative ORN sensitivity to each odorant. Threshold responses to Z3-6:OAc and Z3-6:OH are generally above 100μg. Dorsal, D; Lateral, L. Scale bars = 100μm (JPG 160 kb)

Fig14

3-D reconstruction, ORN responses and cobalt lysine stain from male H. virescens type 15 sensillum. a 3-D reconstruction of an ORN glomerular projection from a type 15 sensillum to glomeruli 14 and 38 (N=2). b ORN response profile (original spike trains) from a type 15 sensillum, responding primarily to ß-caryophyllene and weakly to E2-hexenal, 2-phenyl ethanol and α-humulune (N=6; 6 second total recording time, stimulus delivery 3 x 100ms pulses). c-d Cobalt lysine stain showing multiglomerular ORN arborizations within glomeruli 14 and 38. No concentration series constructed (N=1). Dorsal, D; Lateral, L. Scale bars = 100μm (JPG 159 kb)

Fig15

3-D reconstruction, ORN responses and cobalt lysine stain from male H. virescens type 16 sensillum. a 3-D reconstruction of an ORN glomerular projection from a type 16 sensillum to glomeruli 6 (N=12). b 3-D reconstruction of an unusual ORN glomerular projection from a type 16 sensillum to glomerulus 16 (N=1). c Dose-response curves from ORNs in type 16 sensilla (N=13). d-e Cobalt lysine stains for ORNs with corresponding projections to glomeruli 6 and 16. f ORN response profile (original spike trains) from a type 16 sensillum, responding to ß-caryophyllene only (6 second total recording time, stimulus delivery 3 x 100ms pulses). Dorsal, D; Lateral, L. Scale bars = 100μm (JPG 106 kb)

Fig16

a Summary of AL glomerular projections of physiologically characterized ORNs from STS in male H. virescens identified in this study, shown in anterior and lateral aspect. b Antennal lobe glomerular projections of physiologically characterized ORNs from female H. virescens described previously (adapted from Hillier et al. 2006a). In both sexes, ORNs sensitive to pheromones (female sex pheromone and male hairpencil pheromones) project to glomeruli near the base of the AN, whereas ORNs sensitive to induced plant volatiles are situated more medially within the AL. Glomeruli in both sexes are labeled according to the Heliothis virescens antennal lobe atlas (Berg et al. 2002). Dorsal, D; Medial M; Anterior, A (JPG 110 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hillier, N.K., Vickers, N.J. Physiology and antennal lobe projections of olfactory receptor neurons from sexually isomorphic sensilla on male Heliothis virescens . J Comp Physiol A 193, 649–663 (2007). https://doi.org/10.1007/s00359-007-0220-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-007-0220-3

Keywords

Navigation