Skip to main content

Advertisement

Log in

Turbulent separated shear flow control by surface plasma actuator: experimental optimization by genetic algorithm approach

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The potential benefits of active flow control are no more debated. Among many others applications, flow control provides an effective mean for manipulating turbulent separated flows. Here, a nonthermal surface plasma discharge (dielectric barrier discharge) is installed at the step corner of a backward-facing step (U 0 = 15 m/s, Re h  = 30,000, Re θ  = 1650). Wall pressure sensors are used to estimate the reattaching location downstream of the step (objective function #1) and also to measure the wall pressure fluctuation coefficients (objective function #2). An autonomous multi-variable optimization by genetic algorithm is implemented in an experiment for optimizing simultaneously the voltage amplitude, the burst frequency and the duty cycle of the high-voltage signal producing the surface plasma discharge. The single-objective optimization problems concern alternatively the minimization of the objective function #1 and the maximization of the objective function #2. The present paper demonstrates that when coupled with the plasma actuator and the wall pressure sensors, the genetic algorithm can find the optimum forcing conditions in only a few generations. At the end of the iterative search process, the minimum reattaching position is achieved by forcing the flow at the shear layer mode where a large spreading rate is obtained by increasing the periodicity of the vortex street and by enhancing the vortex pairing process. The objective function #2 is maximized for an actuation at half the shear layer mode. In this specific forcing mode, time-resolved PIV shows that the vortex pairing is reduced and that the strong fluctuations of the wall pressure coefficients result from the periodic passages of flow structures whose size corresponds to the height of the step model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Benard N, Moreau E (2010) Capabilities of the dielectric barrier discharge plasma actuator for multi-frequency excitations. J Phys D Appl Phys 43:145201

    Article  Google Scholar 

  • Benard N, Moreau E (2014) Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control. Exp Fluids 55:1846

    Article  Google Scholar 

  • Benard N, Sujar-Garrido P, Moreau E, Bonnet JP (2015) Open loop control of a turbulent backward facing step by DBD. In: Proceedings of TSFP 9, Melbourne

  • Bhattacharjee S, Scheelke B, Troutt TR (1986) Modification of vortex interactions in a reattaching separated flow. AIAA J 24:623–629

    Article  Google Scholar 

  • Bledsoe WW (1961) The use of biological concepts in the analytical study of systems. In: Paper presented at the ORSA-TIMS National Meeting, San Francisco, CA

  • Boria F, Stanford B, Bowman W, Ifju P (2009) Evolutionary optimization of a morphing wing with wind tunnel hardware-in-the-loop. AIAA paper

  • Brown GL, Roshko A (1974) On density effects and large structure in turbulent mixing layers. J Fluid Mech 64:775–816

    Article  Google Scholar 

  • Cattafesta LN III, Sheplak M (2011) Actuators for active flow control. Annu Rev Fluid Mech 43:247–272

    Article  Google Scholar 

  • Chen X, Agarwal RK (2013) Optimization of wind turbine blade airfoils using a multi-objective genetic algorithm. J Aircr 50:519–527

    Article  Google Scholar 

  • Cherry NJ, Hillier R, Latour P (1983) The unsteady structure of two-dimensional separated-and-reattaching flows. J Wind Eng Ind Aerodyn 11:95–105

    Article  Google Scholar 

  • Cherry NJ, Hillier R, Latour P (1984) Unsteady measurements in a separated and reattaching flow. J Fluid Mech 144:13–46

    Article  Google Scholar 

  • Chun KB, Sung HJ (1996) Control of turbulent separated flow over a backward-facing step by local forcing. Exp Fluids 21:417–426

    Article  Google Scholar 

  • Chun S, Liu YZ, Sung HJ (2004) Wall pressure fluctuations of a turbulent separated and reattaching flow affected by an unsteady wake. Exp Fluids 37:531–546

    Article  Google Scholar 

  • Cohen J, Wygnanski I (1987) The evolution of instabilities in the axisymmetric jet. Part 1. The linear growth of disturbances near the nozzle. J Fluid Mech 176:191–219

    Article  Google Scholar 

  • Corke TC, Enloe CL, Wilkinson SP (2010) Dielectric barrier discharge plasma actuators for flow control. Annu Rev Fluid Mech 42:505–529

    Article  Google Scholar 

  • Correale G, Michelis T, Kotsonis M (2014) NS-DBD plasma actuation on a backward facing step. AIAA paper

  • d’Adamo J, Sosa R, Artana G (2014) Active control of a backward facing step flow with plasma actuators. J Fluid Eng 136:121105

    Article  Google Scholar 

  • Driver DM, Seegmiller HL, Marvin JG (1987) Time-dependent behavior of reattaching shear layer. AIAA J 25:914–919

    Article  Google Scholar 

  • Duvigneau R, Visonneau M (2004) Hybrid genetic algorithms and artificial neural networks for complex design optimization in CFD. Int J Numer Methods Fluids 44:1257–1278

    Article  MATH  Google Scholar 

  • Gad-El-Hak M (2007) Flow control: passive, active, and reactive flow management. Cambridge University Press, Cambridge

    Google Scholar 

  • Gautier N, Duriez T, Aider JL, Noack B, Segond M, Abel M (2015) Closed-loop separation control using machine learning. J Fluid Mech 770:442–457

    Article  Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Boston

    MATH  Google Scholar 

  • Graftieaux L, Michard M, Grosjean N (2001) Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas Sci Technol 12:1422–1429

    Article  Google Scholar 

  • Hasan MAZ (1992) The flow over a backward-facing step under controlled perturbation: laminar separation. J Fluid Mech 238:73–96

    Article  Google Scholar 

  • Hilgers A, Boersma BJ (2001) Optimization of turbulent jet mixing. Fluid Dyn Res 29:345–368

    Article  Google Scholar 

  • Ho CM, Huang LS (1982) Subharmonics and vortex merging in mixing layers. J Fluid Mech 119:443–473

    Article  Google Scholar 

  • Huang L, Huang G, LeBeau R, Hauser T (2007) Optimization of airfoil flow control using a genetic algorithm with diversity control. J. Aircr 44:1337–1349

    Article  Google Scholar 

  • Hudy LM, Naguib AM, Humphreys WM (2003) Wall-pressure-array measurements beneath a separating/reattaching flow region. Phys Fluids 15:706–717

    Article  Google Scholar 

  • Husain HS, Hussain F (1995) Experiments on subharmonic resonance in a shear layer. J Fluid Mech 304:343–372

    Article  Google Scholar 

  • Kanazaki M, Matsumo T, Maeda K, Kawazoe M (2015) Efficient global optimization applied to multi-objective design optimization of lift creating cylinder using plasma actuators. In: Proceedings of the 18th Asia Pacific symposium on intelligent and evolutionary systems, vol 1, pp 663–677

  • Kaul UK (2014) First principle based PID control of mixing layer: role of inflow perturbation spectrum. AIAA paper

  • Kim S, Choi H, Yoo JY (2007) Effect of local forcing on backward-facing step flow with laminar separation. J Turbul 8:N6

    Article  Google Scholar 

  • Klockgether J, Schwefel HP (1970) Two-phase nozzle and hollow core jet experiments. In: 11th symposium on engineering aspects of magnetohydrodynamics, Pasadena

  • Lee DS, Morillo C, Bugeda G, Oller S, Onate E (2011a) Multilayered composite structure design optimisation using distributed/parallel multi-objective evolutionary algorithms. J Composite Struct 94:1087–1096

    Article  Google Scholar 

  • Lee DS, Gonzalez LF, Periaux J, Bugeda G (2011b) Double shock control bump design optimisation using hybridised evolutionary algorithms. J Aerosp Eng 225:1–8

    Google Scholar 

  • Liu YZ, Kang W, Sung HJ (2005) Assessment of the organization of a turbulent separated and reattaching flow by measuring wall pressure fluctuations. Exp Fluids 38:485–493

    Article  Google Scholar 

  • MacCormack W, Tutty OR, Rogers E, Nelson PA (2002) Stochastic optimisation based control of boundary layer transition. Control Eng Pract 10:243–260

    Article  Google Scholar 

  • Mansour NN, Hussain F, Buell C (1988) Subharmonic resonance in a mixing layer. In: Proceedings of the summer program on Center for Turbulent Research

  • Mehrez Z, Bouterra M, El Cafsi A, Belghith A, Le Quere P (2011) Mass transfer control of a backward-facing step flow by local forcing-effect of reynolds number. Therm Sci 15:367–378

    Article  Google Scholar 

  • Milano M, Koumoutsakos P (2002) A clustering genetic algorithm for cylinder drag optimization. J Comput Phys 175:79–107

    Article  MATH  Google Scholar 

  • Morimoto K, Iwamoto K, Suzuki Y, Kasagi N (2002) Genetic algorithm-based optimization of feedback control scheme for wall turbulence. In: Proceedings of 3rd symposium on smart control of turbulence, pp 107–113

  • Obayashi S, Takanashi S (1996) Genetic optimization of target pressure distributions for inverse design methods. AIAA J 34:881–886

    Article  Google Scholar 

  • Olhofer M, Yankulova D, Sendhoff B (2011) Autonomous experimental design optimization of a flapping wing. Genet Program Evolvable Mach 47:23–47

    Article  Google Scholar 

  • Oster D, Wygnanski I (1982) The forced mixing layer between parallel streams. J Fluid Mech 123:91–130

    Article  Google Scholar 

  • Parezanovic V, Laurentie JC, Duriez T, Fourment C, Delville J, Bonnet JP, Cordier L, Noack BR, Segond M, Abel M, Shaqarin T, Brunton S (2015) Mixing layer manipulation experiment—from periodic forcing to machine learning closed-loop control. Flow Turbul Combust 94:155–173

    Article  Google Scholar 

  • Paschereit CO, Wygnanski I (1991) Instabilities in the axisymmetric jet: subharmonic resonance. In: Unger Y, Branover H (ed). Advances in turbulence studies. doi:10.2514/4.866227

  • Pastoor M, Henning L, Noack BR, King R, Tadmor G (2008) Feedback shear layer control for bluff body drag reduction. J Fluid Mech 608:161–196

    Article  MATH  Google Scholar 

  • Rechenberg I (1965) Cybernetic solution path of an experimental problem. Royal Aircraft Establishment, Library Translation 1122, Farnborough

  • Roos FW, Kegelman JT (1986) Control of coherent structures in reattaching laminar and turbulent shear layers. AIAA J 24:1956–1963

    Article  Google Scholar 

  • Selfridge OJ (1959) Pandemonium: a paradigm for learning. In: Proceedings of the symposium on the mechanization of thought processes, pp 511–529

  • Sengupta TK, Deb K, Tala SB (2007) Control of flow using genetic algorithm for a circular cylinder executing rotary oscillation. Comput Fluids 36:578–600

    Article  MATH  Google Scholar 

  • Srinivas N, Deb K (1994) Multiobjective optimization using non dominated sorting in genetic algorithms. Evol Comput 2:221–248

    Article  Google Scholar 

  • Sujar-Garrido P, Benard N, Moreau E, Bonnet JP (2015) Dielectric barrier discharge plasma actuator to control turbulent flow downstream of a backward-facing step. Exp Fluids 56:70

    Article  Google Scholar 

  • Sulaiman T, Sekimoto S, Tatsukawa T, Nonomura T, Oyama A, Fujii K (2013) DBD plasma actuator multi-objective design optimization at Reynolds number 63,000: baseline case. In: Proceedings of ASME 2013, FEDSM2013-16325

  • Wang JF, Periaux J, Sefrioui M (2002) Parallel evolutionary algorithms for optimization problems in aerospace engineering. J Comput Appl Math 149:155–169

    Article  MATH  Google Scholar 

  • Wang J-J, Choi K-S, Feng L-H, Jukes TN (2013) Recent developments in DBD plasma flow control. Prog Aerosp Sci 62:52–78

    Article  Google Scholar 

  • Watanabe T, Tatsukawa T, Jaimes AL, Aono H, Nonomura T, Oyama A, Fujii K (2014) Many-objective evolutionary computation for optimization of separated-flow control using a DBD plasma actuator. In: 2014 IEEE Congress on evolutionary computation (CEC), pp 2849–2854

  • Winant CD, Browand FK (1974) Vortex pairing: the mechanism of turbulent layer growth at moderate Reynolds number. J. Fluid Mech 63:237–255

    Article  Google Scholar 

  • Wygnanski I, Petersen RA (1987) Coherent motion in excited free shear flows. AIAA J 25:201–213

    Article  Google Scholar 

  • Zhang HQ, Shu W (1990) Numerical simulations of vortex merging and vortex splitting in mixing layer. Sci China 33:686–695

    Google Scholar 

Download references

Acknowledgments

This work was supported by the 7th Framework Program FP7/2010-2013, MARS (Grant Agreement No. 266326). Research equipment funded by the French Government program ‘Investissements d’Avenir’ (LABEX INTERACTIFS, reference ANR-11-LABX-0017-01). The authors thank Ms P. Sujar-Garrido for his help in designing the step model and the fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Benard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benard, N., Pons-Prats, J., Periaux, J. et al. Turbulent separated shear flow control by surface plasma actuator: experimental optimization by genetic algorithm approach. Exp Fluids 57, 22 (2016). https://doi.org/10.1007/s00348-015-2107-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-015-2107-3

Keywords

Navigation