Skip to main content
Log in

PIV-based investigations of animal flight

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

An overview is presented of the principles of estimation of fluid forces exerted upon solid bodies, based upon whole-field velocity measurements such as provided by PIV. The focus will be on the range of length and velocity scales characterised by the flight of large insects, birds, bats and small unmanned air vehicles, so that while viscous terms in the Navier–Stokes equations can many times be ignored in the quantitative analysis, understanding and measuring boundary-layer flows, separation and instability will ultimately be critical to predicting and controlling the fluid motions. When properly applied, PIV methods can make accurate estimates of time-averaged and unsteady forces, although even ostensibly simple cases with uncomplicated geometries can prove challenging in detail. Most PIV-based force estimates are embedded in some analytical model of the fluid–structure interaction, and examples of these with varying degrees of complexity are given. In any event, the performance and accuracy of the PIV method in use must be well understood as part of both the overall uncertainty analysis and the initial experimental design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

tip-to-tip flapping amplitude (m)

AR :

aspect ratio (AR = b/c)

b :

wingspan (m)

c :

mean chord (m)

C L, C D :

lift and drag coefficients (C x = F x/qS)

C D,pro :

profile drag coefficient of wing

C D,i :

induced drag coefficient of wing

C F :

laminar skin friction coefficient

D :

image displacement (pix)

D :

drag, force parallel to U 0 (N)

D′:

drag per unit span (N/m)

f :

flapping frequency (/s)

F x :

force component in the x direction (N)

g :

acceleration due to gravity (m/s2)

I :

impulse (kg m/s)

l :

length scale (m)

L :

lift, force normal to U 0 (N)

p :

pressure (N/m2)

p 0 :

freestream pressure (N/m2)

q :

dynamic pressure \( \left( {q = \frac{1}{2}\rho U^{2} ,\;{\text{N}}/{\text{m}}^{2} } \right) \)

Re :

Reynolds number (Re x based on length scale x)

r 0 :

vortex radius (m)

R :

general, resultant force vector (N)

R wv :

wake vortex ratio

S :

control surface (m2)

S :

shear deformation (dx/x, dimensionless)

S :

wing planform area (S = bc, m2)

St :

Strouhal number (St = fA/U)

t :

time (s)

T :

wingbeat period (s)

u :

velocity vector field (m/s)

u, v, w :

velocity components in x, y, z (m/s)

u 1 :

upstream uniform streamwise velocity (m/s)

u 2 :

downstream,disturbed streamwise velocity (m/s)

U 0 :

mean, undisturbed uniform streamwise velocity (m/s)

U :

mean flow speed or mean flight speed (m/s)

V :

control volume (m3)

w i :

induced velocity (due to wing lift) (m/s)

W :

body weight (N)

x :

position vector (m)

x, y, z :

Cartesian coordinates in streamwise (flightwise), spanwise and vertical directions (m)

α :

angle of attack (deg)

α i :

induced angle of attack—the decrease in α caused by w i (deg)

δt :

exposure time between two PIV images (typically μs)

ϕ :

velocity potential (m2/s)

Γ:

circulation (m2/s)

Γ0 :

circulation at wing centreline (m2/s)

μ :

viscosity (kg/m/s)

ν :

kinematic viscosity (ν = μ/ρ, m2/s)

θ :

momentum integral (m)

ρ :

fluid density (kg/m3)

\(\varvec{\upomega}\) :

vorticity vector (/s)

ω x :

vorticity component in the x direction (normal to the yz plane) (/s)

CIV:

Correlation Imaging Velocimetry

DLE:

Direct Lyapunov Exponent

DNS:

Direct Numerical Simulation

ENOB:

Effective Number of Bits

LCS:

Lagrangian Coherent Structure

LEV:

Leading Edge Vortex

PIV:

Particle Image Velocimetry

References

  • Adrian RJ (2005) Twenty years of particle image velocimetry. Exp Fluids 39:159–169

    Article  Google Scholar 

  • Anderson JD (2001) Fundamentals of aerodynamics, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Betz AA (1925) A method for the direct determination of profile drag. Z Flug Motorluftschiffahrt 16:42

    Google Scholar 

  • Bomphrey RJ (2006) Insects in flight: direct visualization and flow measurements. Bioinsp Biomim 1:S1–S9

    Article  Google Scholar 

  • Bomphrey RJ, Lawson NJ, Harding NJ, Taylor GK, Thomas ALR (2005) The aerodynamics of Manduca sexta: digital particle image velocimetry analysis of the leading-edge vortex. J Exp Biol 208:1079–1094

    Article  Google Scholar 

  • Bomphrey RJ, Taylor GK, Lawson NJ, Thomas ALR (2006) Digital particle image velocimetry measurements of the downwash distribution of a desert locust Schistocerca gregaria. J R Soc Interf 3:311–317

    Article  Google Scholar 

  • Cardwell BM, Mohseni C (2008) Vortex shedding over a two-dimensional airfoil: where the particles come from. AIAA J 46(3):545–547

    Article  Google Scholar 

  • Chakraborty P, Balachandar S, Adrian RJ (2005) On the relationships between local vortex identification schemes. J Fluid Mech 535:189–214

    Article  MATH  MathSciNet  Google Scholar 

  • Chen J, Katz J (2005) Elimination of peak-locking error in PIV analysis using the correlation mapping method. Meas Sci Tech 16:1605–1618

    Article  Google Scholar 

  • Cholemari MR (2007) Modeling and correction of peak-locking in digital PIV. Exp Fluids 42:913–922

    Article  Google Scholar 

  • Chong MS, Perry AE, Cantwell BJ (1990) A general classification of three-dimensional flow fields. Phys Fluids A2(5):765–777

    MathSciNet  Google Scholar 

  • Dabiri JO (2005) On the estimation of swimming and flying forces from wake measurements. J Exp Biol 208:3519–3532

    Article  Google Scholar 

  • Dabiri JO, Colin SP, Costello JH (2006) Fast-swimming hydromedusae exploit velar kinematics to form an optimal vortex wake. J Exp Biol 209:2025–2033

    Article  Google Scholar 

  • Dickinson MH (2008) Animal locomotion: a new spin on bat flight. Curr Biol 18(11):R468–R470

    Article  Google Scholar 

  • Fincham AM, Spedding GR (1997) Low cost, high resolution DPIV for measurement of turbulent fluid flow. Exp Fluids 23:449–462

    Article  Google Scholar 

  • Fincham AM, Delerce G (2000) Advanced optimization of correlation imaging velocimetry algorithms. Exp Fluids 29:S13–S22

    Article  Google Scholar 

  • Green MA, Rowley CW, Haller G (2007) Detection of Lagrangian coherent structures in three-dimensional turbulence. J Fluid Mech 572:111–120

    Article  MATH  MathSciNet  Google Scholar 

  • Haller G (2002) Lagrangian coherent structures from approximate velocity data. Phys Fluids 14(6):1851–1861

    Article  MathSciNet  Google Scholar 

  • Haller G (2005) An objective definition of a vortex. J Fluid Mech 525:1–26

    Article  MATH  MathSciNet  Google Scholar 

  • Hedenström A, van Griethuijsen L, Rosén M, Spedding GR (2006) Vortex wakes of birds: recent developments using digital particle image velocimetry in a wind tunnel. Anim Biol 56:535–549

    Article  Google Scholar 

  • Hedenström A, Johansson LC, Wolf M, von Busse R, Winter Y, Spedding GR (2007) Bat flight generates complex aerodynamic tracks. Science 316:894–897

    Article  Google Scholar 

  • Hedenström A, Muijres F, von Busse R, Johansson C, Winter Y, Spedding GR (2008) High-speed 3D PIV measurements of bat wakes flying freely in a wind tunnel. Exp Fluids (submitted, this volume)

  • Hedenström A, Spedding GR (2008) Beyond robins: aerodynamic analyses of animal flight. J R Soc Interf 5:595–601

    Article  Google Scholar 

  • Henningsson P, Spedding GR, Hedenström A (2008) Vortex wake and flight kinematics of a swift in cruising flight in a wind tunnel. J Exp Biol 211:717–730

    Article  Google Scholar 

  • Huang HT, Fiedler HE, Wang JJ (1993) Limitation and improvement of PIV. Part II: particle image distortion, a novel technique. Exp Fluids 15:263–273

    Google Scholar 

  • Hunt JCR, Wray AA, Moin P (1988) Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research Report CTR-S88, Stanford

    Google Scholar 

  • Jeong J, Hussein F (1995) On the identification of a vortex. J Fluid Mech 285:69–94

    Article  MATH  MathSciNet  Google Scholar 

  • Kester W (2006) ADC input noise: the good, the bad and the ugly. Is no noise good noise? Analog Dialogue 40(02):13–17

    Google Scholar 

  • Kurtulus DF, David L, Farcy A, Alemdaroglu N (2008) Aerodynamic characteristics of flapping motion in hover. Exp Fluids 44:23–36

    Article  Google Scholar 

  • Lighthill MJ (1970) Aquatic animal propulsion of high hydromechanical efficiency. J Fluid Mech 44:265–301

    Article  MATH  Google Scholar 

  • Lin JC, Rockwell D (1996) Force identification by vorticity fields: techniques based on flow imaging. J Fluids Struct 10:663–668

    Article  Google Scholar 

  • Meheut M, Bailly D (2008) Drag-breakdown methods from wake measurements. AIAA J 46(4):847–863

    Article  Google Scholar 

  • Muijres FT, Johansson LC, Barfield R, Wolf M, Spedding GR, Hedenström A (2008) Leading-edge vortices increase lift in bat flight. Science 319:1250–1253

    Article  Google Scholar 

  • Noca F, Shiels D, Jeon D (1999) A comparison of methods for evaluating time-dependent fluid dynamic forces on bodies, using only velocity fields and their derivatives. J Fluids Struct 13:551–578

    Article  Google Scholar 

  • Nogueria J, Lecuona A, Rodriguez PA (2001) Identification of a new source of peak locking, analysis and its removal in conventional and super-resolution PIV techniques. Exp Fluids 30:309–316

    Article  Google Scholar 

  • Norberg UM (1990) Vertebrate flight. Springer, Berlin

    Google Scholar 

  • Peng J, Dabiri JO (2007) A potential flow, deformable-body model for fluid structure interactions with compact vorticity: application to animal swimming measurements. Exp Fluids 43:655–664

    Article  Google Scholar 

  • Perry AE, Lim TT, Chong MS (1980) The instantaneous velocity fields of coherent structures in coflowing jets and wakes. J Fluid Mech 101:243–256

    Article  MATH  Google Scholar 

  • Polhamus EC (1971) Predictions of vortex-lift characteristics by a leading-edge suction analogy. J Aircraft 8(4):193–199

    Article  Google Scholar 

  • Prandtl L, Tietjens OG (1934) Applied hydro- and aeromechanics. United Engineering Trustees and Dover Publications, New York

    Google Scholar 

  • Prasad AK, Adrian RJ, Landreth CC, Offutt PW (1992) Effect of resolution on the speed and accuracy of particle image velocimetry interrogation. Exp Fluids 13:105–116

    Article  Google Scholar 

  • Saffman PG (1970) The velocity of viscous vortex rings. SIAM J 49:371–380

    MATH  Google Scholar 

  • Saffman PG (1992) Vortex dynamics. Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  • Scarano F (2002) Iterative image deformation methods in PIV. Meas Sci Tech 13:R1–R19

    Article  Google Scholar 

  • Scarano F, Riethmuller ML (1999) Iterative multigrid approach in PIV image processing with discrete window offset. Exp Fluids 26:513–523

    Article  Google Scholar 

  • Shadden S, Lekien F, Marsden J (2005) Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D 212:271–304

    Article  MATH  MathSciNet  Google Scholar 

  • Shadden S, Dabiri J, Marsden J (2006) Lagrangian analysis of fluid transport in empirical vortex ring flows. Phys Fluids 18:047105

    Article  MathSciNet  Google Scholar 

  • Stanislas M, Okamoto K, Kahler CJ, Westerweel J, Scarano F (2008) Main results of the third international PIV challenge. Exp Fluids 45:27–71

    Article  Google Scholar 

  • Utami T, Blackwelder RF (1991) A cross-correlation technique for velocity field extraction from particulate visualization. Exp Fluids 10:213–223

    Article  Google Scholar 

  • van Oudheusden BW, Scarano F, Roosenboom EWM, Casimiri EWF, Souverein LJ (2007) Evaluation of integral forces and pressure fields from planar velocimetry data for incompressible and compressible flows. Exp Fluids 43:153–162

    Article  Google Scholar 

  • Wang ZJ, Birch JM, Dickinson MH (2004) Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments. J Exp Biol 207:449–460

    Article  Google Scholar 

  • Westerweel J (1997) Fundamentals of digital particle image velocimetry. Meas Sci Tech 8:1379–1392

    Article  Google Scholar 

  • Westerweel J (2000) Theoretical analysis of the measurement precision in particle image velocimetry. Exp Fluids 29:S3–S12

    Article  Google Scholar 

  • White FM (2008) Fluid mechanics, 6th edn. McGraw-Hill, New York

    Google Scholar 

  • Willert CE, Gharib M (1991) Digital particle image velocimetry. Exp Fluids 10:181–193

    Article  Google Scholar 

  • Willmott AP, Ellington CP, Thomas ALR (1997) Flow visualization and unsteady aerodynamics in the flight of the hawkmoth Manduca sexta. Phil Trans R Soc Lond B 352:303–316

    Article  Google Scholar 

  • Zhou J, Adrian RJ, Balachandar S, Kendall TM (1999) Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech 387:353–396

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is a review based in part on work done at the University of Southern California and at Lund University. Significant contributors to this effort at USC include John McArthur and Mikael Rosen, and Florian Muijres, Christoffer Johansson and Per Henningsson at LU. We are most grateful to the Swedish Research Council and the Knut and Alice Wallenberg Foundation for support in LU. The Air Force Office of Scientific Research provided partial support for JMcA at USC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey R. Spedding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spedding, G.R., Hedenström, A. PIV-based investigations of animal flight. Exp Fluids 46, 749–763 (2009). https://doi.org/10.1007/s00348-008-0597-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-008-0597-y

Keywords

Navigation