Skip to main content

Advertisement

Log in

Evaluation of Physio-Morphological and Biochemical Responses for Salt Tolerance in Wheat (Triticum aestivum L.) Cultivars

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Salt toxicity in agricultural soils is a principal abiotic constraint that limits crop growth, development, and yield. The employment of potential selection markers for screening salt-tolerant wheat cultivars is crucial for conventional breeding programs and molecular biology approaches that may ensure sustainable wheat production under saline soils. The current experiment explored the tolerance potential of ten wheat cultivars to salt stress (150 mM) by utilizing various growth, biomass, physiological, and biochemical traits. Salt stress significantly abated growth-related parameters, leaf relative water content (LRWC), SPAD, gas exchange attributes, total soluble proteins (TSP), and anthocyanins in all wheat cultivars. The drop in these attributes was more visible alongside higher oxidative stress mirrored as excessive accumulation of oxidative stress markers such as superoxide radicals (O2⋅‒), methylglyoxal (MG), hydrogen peroxide (H2O2), malondialdehyde (MDA), and higher lipoxygenase (LOX) activity in salt-sensitive cultivars than salt-tolerant cultivars. Salinity stress caused disequilibrium in ionic uptake with an apparent decline in K, P, and Ca content with a concomitant increase in the accumulation of Na in both leaves and roots of all wheat cultivars, with a more visible effect in salt-sensitive cultivars. Further, salt-tolerant cultivars displayed greater root Na content. Salt-sensitive cultivars failed to maintain the K/Na ratio under salt toxicity. In contrast, salt-tolerant cultivars displayed better growth, gas exchange attributes, and strengthened antioxidant systems alongside lower oxidative stress. Moreover, salt-tolerant cultivars exhibited a higher accumulation of osmolytes, hydrogen sulfide, and nitric oxide. Therefore, these physiological and biochemical markers could be promising for screening tolerant wheat cultivars under salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7(1):18

    Article  Google Scholar 

  • Ahmad P, Abdel Latef AA, Hashem A, Abd-Allah EF, Gucel S, Tran LSP (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7:347

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad S, Mfarrej MFB, El-Esawi MA, Waseem M, Alatawi A, Nafees M, Saleem MH, Rizwan M, Yasmeen T, Anayat A (2022) Chromium-resistant Staphylococcus aureus alleviates chromium toxicity by developing synergistic relationships with zinc oxide nanoparticles in wheat. Ecotoxicol Environ Saf 230:113142

    Article  CAS  PubMed  Google Scholar 

  • Akbar A, Ashraf MA, Rasheed R, Ali S, Rizwan M (2021) Menadione sodium bisulphite regulates physiological and biochemical responses to lessen salinity effects on wheat (Triticum aestivum L.). Physiol Mol Biol Plants 27(5):1135–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen S, Grimshaw H, Rowland A (1986) Chemical analysis. In: Moore PD, Chapman SB (eds) Methods in plant ecology. Blackwell, Oxford, pp 285–344

    Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53(372):1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Arzani A (2008) Improving salinity tolerance in crop plants: a biotechnological view. In Vitro Cell Dev Biol-Plant 44(5):373–383

    Article  CAS  Google Scholar 

  • Arzani A, Ashraf M (2016) Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Crit Rev Plant Sci 35(3):146–189

    Article  CAS  Google Scholar 

  • Ashraf MA, Asma HF, Iqbal M (2019) Exogenous menadione sodium bisulfite mitigates specific ion toxicity and oxidative damage in salinity-stressed okra (Abelmoschus esculentus Moench). Acta Physiol Plant 41(12):1–12

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Castañares JL, Bouzo CA (2019) Effect of exogenous melatonin on seed germination and seedling growth in melon (Cucumis melo L.) under salt stress. Hortic Plant J 5(2):79–87

    Article  Google Scholar 

  • Chance B, Maehly A (1955) Assay of catalases and peroxidases. Elsevier, Amsterdam

    Google Scholar 

  • Chawla S, Jain S, Jain V (2013) Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). J Plant Biochem Biotechnol 22(1):27–34. https://doi.org/10.1007/s13562-012-0107-4

    Article  CAS  Google Scholar 

  • Chen TH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34(1):1–20

    Article  PubMed  Google Scholar 

  • Desoky E-SM, El-maghraby LM, Awad AE, Abdo AI, Rady MM, Semida WM (2020) Fennel and ammi seed extracts modulate antioxidant defence system and alleviate salinity stress in cowpea (Vigna unguiculata). Sci Hortic 272:109576

    Article  CAS  Google Scholar 

  • Doderer A, Kokkelink I, van der Veen S, Valk BE, Schram A, Douma AC (1992) Purification and characterization of two lipoxygenase isoenzymes from germinating barley. Biochim Biophys Acta (BBA)- Protein Struct Mol Enzymol 1120(1):97–104

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Pt R, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    Article  CAS  Google Scholar 

  • Ebrahim F, Arzani A, Rahimmalek M, Sun D, Peng J (2020) Salinity tolerance of wild barley Hordeum vulgare ssp. spontaneum. Plant Breed 139(2):304–316

    Article  CAS  Google Scholar 

  • El Moukhtari A, Cabassa-Hourton C, Farissi M, Savouré A (2020) How does proline treatment promote salt stress tolerance during crop plant development? Front Plant Sci 11:1127

    Article  PubMed  PubMed Central  Google Scholar 

  • Evelin H, Devi TS, Gupta S, Kapoor R (2019) Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: current understanding and new challenges. Front Plant Sci 10:470

    Article  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Hussain M, Wakeel A, Siddique KH (2015) Salt stress in maize: effects, resistance mechanisms, and management. Rev Agron Sustain Dev 35(2):461–481

    Article  CAS  Google Scholar 

  • Flower D, Ludlow M (1987) Variation among accessions of pigeonpea (Cajanus cajan) in osmotic adjustment and dehydration tolerance of leaves. Field Crops Res 17(3–4):229–243

    Article  Google Scholar 

  • Garcia-Caparros P, De Filippis L, Gul A, Hasanuzzaman M, Ozturk M, Altay V, Lao MT (2021) Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review. Bot Rev 87(4):421–466

    Article  Google Scholar 

  • Gardner FP, Pearce RB, Mitchell RL (2017) Physiology of crop plants. Scientific publishers

  • Golkar P, Taghizadeh M, Yousefian Z (2019) The effects of chitosan and salicylic acid on elicitation of secondary metabolites and antioxidant activity of safflower under in vitro salinity stress. Plant Cell Tissue Organ Cult (PCTOC) 137(3):575–585

    Article  CAS  Google Scholar 

  • Grieve C, Grattan S (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70(2):303–307

    Article  CAS  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics. https://doi.org/10.1155/2014/701596

    Article  PubMed  PubMed Central  Google Scholar 

  • Haddoudi L, Hdira S, Hanana M, Romero I, Haddoudi I, Mahjoub A, Ben Jouira H, Djébali N, Ludidi N, Sanchez-Ballesta MT (2021) Evaluation of the morpho-physiological, biochemical and molecular responses of contrasting Medicago truncatula lines under water deficit stress. Plants 10(10):2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagen SF, Borge GIA, Solhaug KA, Bengtsson GB (2009) Effect of cold storage and harvest date on bioactive compounds in curly kale (Brassica oleracea L. var. acephala). Postharvest Biol Technol 51(1):36–42

    Article  CAS  Google Scholar 

  • Hamilton PB, Van Slyke DD, Lemish S (1943) The gasometric determination of free amino acids in blood filtrates by the ninhydrin-carbon dioxide method. Biol Chem 150:231–250

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Fujita M (2011) Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol Trace Elem Res 143(3):1758–1776

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Hossain MS, Mahmud JA, Rahman A, Inafuku M, Oku H, Fujita M (2017) Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. Int J Mol Sci 18(1):200

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Bhuyan MB, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9(8):681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassanpour H, Khavari-Nejad RA, Niknam V, Najafi F, Razavi K (2013) Penconazole induced changes in photosynthesis, ion acquisition and protein profile of Mentha pulegium L. under drought stress. Physiol Mol Biol Plants 19(4):489–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatam Z, Sabet MS, Malakouti MJ, Mokhtassi-Bidgoli A, Homaee M (2020) Zinc and potassium fertilizer recommendation for cotton seedlings under salinity stress based on gas exchange and chlorophyll fluorescence responses. S Afr J Bot 130:155–164

    Article  CAS  Google Scholar 

  • Hussain RA, Ahmad R, Waraich EA, Nawaz F (2015) Nutrient uptake, water relations, and yield performance lf different wheat cultivars (Triticum aestivum L.) under salinity stress. J Plant Nutr 38(13):2139–2149

    Article  CAS  Google Scholar 

  • Jackson ML (1969) Soil chemical analysis-advanced course. M.L. Jackson, Madison

  • Kafi M, Nabati J, Ahmadi-Lahijani MJ, Oskoueian A (2021) Silicon compounds and potassium sulfate improve salinity tolerance of potato plants through instigating the defense mechanisms, cell membrane stability, and accumulation of osmolytes. Commun Soil Sci Plant Anal 52(8):843–858

    Article  CAS  Google Scholar 

  • Kaur C, Sharma S, Singla-Pareek SL, Sopory SK (2016) Methylglyoxal detoxification in plants: role of glyoxalase pathway. Indian J Plant Physiol 21(4):377–390

    Article  Google Scholar 

  • Kaya C, Akram NA, Sürücü A, Ashraf M (2019) Alleviating effect of nitric oxide on oxidative stress and antioxidant defence system in pepper (Capsicum annuum L.) plants exposed to cadmium and lead toxicity applied separately or in combination. Sci Hortic 255:52–60

    Article  CAS  Google Scholar 

  • Kiani R, Arzani A, Mirmohammady Maibody S (2021) Polyphenols, flavonoids, and antioxidant activity involved in salt tolerance in wheat, Aegilops cylindrica and their amphidiploids. Front Plant Sci 12:646221

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Trivedi PK (2018) Glutathione S-transferases: role in combating abiotic stresses including arsenic detoxification in plants. Front Plant Sci 9:751

    Article  PubMed  PubMed Central  Google Scholar 

  • Lai D, Mao Y, Zhou H, Li F, Wu M, Zhang J, He Z, Cui W, Xie Y (2014) Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa. Plant Sci 225:117–129

    Article  CAS  PubMed  Google Scholar 

  • Li J, Shi C, Wang X, Liu C, Ding X, Ma P, Wang X, Jia H (2020) Hydrogen sulfide regulates the activity of antioxidant enzymes through persulfidation and improves the resistance of tomato seedling to copper oxide nanoparticles (CuO NPs)-induced oxidative stress. Plant Physiol Biochem 156:257–266

    Article  CAS  PubMed  Google Scholar 

  • Lightenthaler H (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  Google Scholar 

  • Liu P, Yin L, Wang S, Zhang M, Deng X, Zhang S, Tanaka K (2015) Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L. Environ Exp Bot 111:42–51

    Article  CAS  Google Scholar 

  • Luo Z, Li D, Du R, Mou W (2015) Hydrogen sulfide alleviates chilling injury of banana fruit by enhanced antioxidant system and proline content. Sci Hortic 183:144–151

    Article  CAS  Google Scholar 

  • Mahmud JA, Hasanuzzaman M, Khan MIR, Nahar K, Fujita M (2020) Aminobutyric acid pretreatment confers salt stress tolerance in Brassica napus L. by modulating reactive oxygen species metabolism and methylglyoxal detoxification. Plants 9(2):241

    Article  PubMed  PubMed Central  Google Scholar 

  • Mäkelä PS, Jokinen K, Himanen K (2019) Roles of endogenous glycinebetaine in plant abiotic stress responses. In: Hossain MA, Kumar V, Burritt DJ, Fujita M, Mäkelä PSA (eds) Osmoprotectant-mediated abiotic stress tolerance in plants. Springer, Berlin

    Google Scholar 

  • Masood A, Shah NA, Zeeshan M, Abraham G (2006) Differential response of antioxidant enzymes to salinity stress in two varieties of Azolla (Azolla pinnata and Azolla filiculoides). Environ Exp Bot 58(1–3):216–222

    Article  CAS  Google Scholar 

  • Mita S, Murano N, Akaike M, Nakamura K (1997) Mutants of Arabidopsis thaliana with pleiotropic effects on the expression of the gene for β-amylase and on the accumulation of anthocyanin that are inducible by sugars. Plant J 11(4):841–851

    Article  CAS  PubMed  Google Scholar 

  • Moustafa ES, Ali MM, Kamara MM, Awad MF, Hassanin AA, Mansour E (2021) Field screening of wheat advanced lines for salinity tolerance. Agronomy 11(2):281

    Article  CAS  Google Scholar 

  • Muhammad I, Shalmani A, Ali M, Yang Q-H, Ahmad H, Li FB (2021) Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Front Plant Sci 11:615942

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukherjee SP, Choudhuri MA (1983) Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58:166–170

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651

    Article  CAS  PubMed  Google Scholar 

  • Nadeem M, Anwar-ul-Haq M, Saqib M, Maqsood M, He Z (2022) Ameliorative effect of silicic acid and silicates on oxidative, osmotic stress, and specific ion toxicity in spring wheat (Triticum aestivum L.) genotypes. J Soil Sci Plant Nutr. https://doi.org/10.1007/s42729-022-00812-0

    Article  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam M, Fujita M (2015a) Glutathione-induced drought stress tolerance in mung bean: coordinated roles of the antioxidant defence and methylglyoxal detoxification systems. AoB Plant. https://doi.org/10.1093/aobpla/plv069

    Article  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam M, Fujita M (2015b) Roles of exogenous glutathione in antioxidant defense system and methylglyoxal detoxification during salt stress in mung bean. Biol Plant 59(4):745–756

    Article  CAS  Google Scholar 

  • Nahar K, Hasanuzzaman M, Fujita M (2016) Roles of osmolytes in plant adaptation to drought and salinity. In: Iqbal N, Nazar R, Khan NA (eds) Osmolytes and plants acclimation to changing environment: Emerging omics technologies. Springer, New Delhi

    Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880

    CAS  Google Scholar 

  • Nashef AS, Osuga DT, Feeney RE (1977) Determination of hydrogen sulfide with 5,5′-dithiobis-(2-nitrobenzoic acid), N-ethylmaleimide, and parachloromercuribenzoate. Anal Biochem 79(1):394–405

    Article  CAS  PubMed  Google Scholar 

  • Omrani S, Arzani A, Esmaeilzadeh Moghaddam M, Mahlooji M (2022) Genetic analysis of salinity tolerance in wheat (Triticum aestivum L.). PLoS ONE 17(3):e0265520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oney-Birol S (2019) Exogenous L-carnitine promotes plant growth and cell division by mitigating genotoxic damage of salt stress. Sci Rep 9(1):1–12

    Article  CAS  Google Scholar 

  • Pandey S, Fartyal D, Agarwal A, Shukla T, James D, Kaul T, Negi YK, Arora S, Reddy MK (2017) Abiotic stress tolerance in plants: myriad roles of ascorbate peroxidase. Front Plant Sci 8:581. https://doi.org/10.3389/fpls.2017.00581

    Article  PubMed  PubMed Central  Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22(6):4056–4075. https://doi.org/10.1007/s11356-014-3739-1

    Article  CAS  Google Scholar 

  • Parvin K, Nahar K, Hasanuzzaman M, Bhuyan MB, Mohsin SM, Fujita M (2020) Exogenous vanillic acid enhances salt tolerance of tomato: insight into plant antioxidant defense and glyoxalase systems. Plant Physiol Biochem 150:109–120

    Article  CAS  PubMed  Google Scholar 

  • Parvin K, Hasanuzzaman M, Mohsin SM, Nahar K, Fujita M (2021) Coumarin improves tomato plant tolerance to salinity by enhancing antioxidant defence, glyoxalase system and ion homeostasis. Plant Biol 23(S1):181–192. https://doi.org/10.1111/plb.13208

    Article  CAS  PubMed  Google Scholar 

  • Quamruzzaman M, Manik SN, Livermore M, Johnson P, Zhou M, Shabala S (2022) Multidimensional screening and evaluation of morpho-physiological indices for salinity stress tolerance in wheat. J Agron Crop Sci. https://doi.org/10.1111/jac.12587

    Article  Google Scholar 

  • Rahimi E, Nazari F, Javadi T, Samadi S, da Silva JAT (2021) Potassium-enriched clinoptilolite zeolite mitigates the adverse impacts of salinity stress in perennial ryegrass (Lolium perenne L.) by increasing silicon absorption and improving the K/Na ratio. J Environ Manage 285:112142

    Article  CAS  PubMed  Google Scholar 

  • Rasheed R, Ashraf MA, Parveen S, Iqbal M, Hussain I (2014) Effect of salt stress on different growth and biochemical attributes in two canola (Brassica napus L.) cultivars. Commun Soil Sci Plant Anal 45(5):669–679

    Article  CAS  Google Scholar 

  • Roychoudhury A, Singh A, Aftab T, Ghosal P, Banik N (2021) Seedling priming with sodium nitroprusside rescues Vigna radiata from salinity stress-induced oxidative damages. J Plant Growth Regul 40(6):2454–2464

    Article  CAS  Google Scholar 

  • Sami F, Yusuf M, Faizan M, Faraz A, Hayat S (2016) Role of sugars under abiotic stress. Plant Physiol Biochem 109:54–61

    Article  CAS  PubMed  Google Scholar 

  • Sankaranarayanan S, Jamshed M, Kumar A, Skori L, Scandola S, Wang T, Spiegel D, Samuel MA (2017) Glyoxalase goes green: the expanding roles of glyoxalase in plants. Int J Mol Sci 18(4):898

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarker U, Oba S (2020) The response of salinity stress-induced A tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Front Plant Sci 11:559876

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaheen S, Naseer S, Ashraf M, Akram NA (2013) Salt stress affects water relations, photosynthesis, and oxidative defense mechanisms in Solanum melongena L. J Plant Interact 8(1):85–96

    Article  CAS  Google Scholar 

  • Shahid MA, Sarkhosh A, Khan N, Balal RM, Ali S, Rossi L, Gómez C, Mattson N, Nasim W, Garcia-Sanchez F (2020) Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy 10(7):938

    Article  CAS  Google Scholar 

  • Shaki F, Maboud HE, Niknam V (2018) Growth enhancement and salt tolerance of Safflower (Carthamus tinctorius L.), by salicylic acid. Curr Plant Biol 13:16–22

    Article  Google Scholar 

  • Sharma OP, Bhat TK (2009) DPPH antioxidant assay revisited. Food Chem 113(4):1202–1205

    Article  CAS  Google Scholar 

  • Sharma A, Soares C, Sousa B, Martins M, Kumar V, Shahzad B, Sidhu GP, Bali AS, Asgher M, Bhardwaj R (2020) Nitric oxide-mediated regulation of oxidative stress in plants under metal stress: a review on molecular and biochemical aspects. Physiol Plant 168(2):318–344

    CAS  PubMed  Google Scholar 

  • Sherin G, Aswathi KR, Puthur JT (2022) Photosynthetic functions in plants subjected to stresses are positively influenced by priming. Plant Stress. https://doi.org/10.1016/j.stress.2022.100079

    Article  Google Scholar 

  • Sofo A, Scopa A, Nuzzaci M, Vitti A (2015) Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int J Mol Sci 16(6):13561–13578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava V, Chowdhary AA, Verma PK, Mehrotra S, Mishra S (2022) Hydrogen sulfide-mediated mitigation and its integrated signaling crosstalk during salinity stress. Physiol Plant 174(1):e13633

    Article  CAS  PubMed  Google Scholar 

  • Sudhir P, Murthy S (2004) Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42(4):481–486

    Article  CAS  Google Scholar 

  • Taïbi K, Taïbi F, Abderrahim LA, Ennajah A, Belkhodja M, Mulet JM (2016) Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S Afr J Bot 105:306–312

    Article  Google Scholar 

  • Tanveer K, Gilani S, Hussain Z, Ishaq R, Adeel M, Ilyas N (2020) Effect of salt stress on tomato plant and the role of calcium. J Plant Nutr 43(1):28–35

    Article  CAS  Google Scholar 

  • Tränkner M, Tavakol E, Jákli B (2018) Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol Plant 163(3):414–431

    Article  Google Scholar 

  • Upadhyaya CP, Venkatesh J, Gururani MA, Asnin L, Sharma K, Ajappala H, Park SW (2011) Transgenic potato overproducing L-ascorbic acid resisted an increase in methylglyoxal under salinity stress via maintaining higher reduced glutathione level and glyoxalase enzyme activity. Biotechnol Lett 33(11):2297–2307

    Article  CAS  PubMed  Google Scholar 

  • van Rossum MW, Alberda M, van der Plas LH (1997) Role of oxidative damage in tulip bulb scale micropropagation. Plant Sci 130(2):207–216

    Article  Google Scholar 

  • Van Zelm E, Zhang Y, Testerink C (2020) Salt tolerance mechanisms of plants. Annu Rev Plant Biol 71:403–433

    Article  PubMed  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151(1):59–66

    Article  CAS  Google Scholar 

  • Wang H, Tang X, Wang H, Shao H-B (2015) Proline accumulation and metabolism-related genes expression profiles in Kosteletzkya virginica seedlings under salt stress. Front Plant Sci 6:792

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolfe K, Wu X, Liu RH (2003) Antioxidant activity of apple peels. J Agric Food Chem 51(3):609–614

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Wu X, Sun M, Peng F (2020) Hydrogen sulfide alleviates waterlogging-induced damage in peach seedlings via enhancing antioxidative system and inhibiting ethylene synthesis. Front Plant Sci 11:696

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Reddy M, Sopory S (2005) Methylglyoxal detoxification by glyoxalase system: a survival strategy during environmental stresses. Physiol Mol Biol Plants 11(1):1

    CAS  Google Scholar 

  • Yang HY, Shi GX, Qiao XQ, Tian XL (2011) Exogenous spermidine and spermine enhance cadmium tolerance of Potamogeton malaianus. Russ J Plant Physiol 58(4):622–628

    Article  CAS  Google Scholar 

  • Yousuf PY, Hakeem KUR, Chandna R, Ahmad P (2012) Role of glutathione reductase in plant abiotic stress. In: Parvaiz Ahmad MNV, Prasad, (eds) Abiotic stress responses in plants. Springer, New York

    Google Scholar 

  • Zegaoui Z, Planchais S, Cabassa C, Djebbar R, Belbachir OA, Carol P (2017) Variation in relative water content, proline accumulation and stress gene expression in two cowpea landraces under drought. J Plant Physiol 218:26–34

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z-P, Miao M-M, Wang C-L (2015) Effects of ALA on photosynthesis, antioxidant enzyme activity, and gene expression, and regulation of proline accumulation in tomato seedlings under NaCl stress. J Plant Growth Regul 34(3):637–650

    Article  CAS  Google Scholar 

  • Zhang J, Zhou M, Zhou H, Zhao D, Gotor C, Romero LC, Shen J, Ge Z, Zhang Z, Shen W (2021) Hydrogen sulfide, a signaling molecule in plant stress responses. J Integr Plant Biol 63(1):146–160

    Article  CAS  PubMed  Google Scholar 

  • Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64(4):555–559

    Article  CAS  Google Scholar 

  • Zhou B, Guo Z, Xing J, Huang B (2005) Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. J Exp Bot 56(422):3223–3228

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Chen Y, Zhai F, Zhang J, Zhang F, Yuan X, Xie Y (2020) Hydrogen sulfide promotes rice drought tolerance via reestablishing redox homeostasis and activation of ABA biosynthesis and signaling. Plant Physiol Biochem 155:213–220

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Fan Y, Shabala S, Li C, Lv C, Guo B, Xu R, Zhou M (2020) Understanding mechanisms of salinity tolerance in barley by proteomic and biochemical analysis of near-isogenic lines. Int J Mol Sci 21(4):1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zulfiqar F, Akram NA, Ashraf M (2020) Osmoprotection in plants under abiotic stresses: New insights into a classical phenomenon. Planta 251(1):1–17

    Article  Google Scholar 

Download references

Acknowledgements

This research work has been financially supported by the Higher Education Commission of Pakistan.

Author information

Authors and Affiliations

Authors

Contributions

MAA: contributed to conceptualization, project administration, supervision, and writing—original draft. AH: contributed to formal analysis, software, validation, and writing—review & editing. RR: contributed to data curation, formal analysis, methodology, and writing—original draft. IH: contributed to conceptualization and writing—review & editing. UF: contributed to supervision, methodology, and writing—review & editing. MR: contributed to formal analysis, supervision, software, validation, and writing—review & editing. SA: contributed to project administration and writing—review & editing.

Corresponding authors

Correspondence to Muhammad Arslan Ashraf, Muhammad Rizwan or Shafaqat Ali.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest regarding this paper.

Additional information

Handling Editor: Francesca Cardinale.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 37 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, M.A., Hafeez, A., Rasheed, R. et al. Evaluation of Physio-Morphological and Biochemical Responses for Salt Tolerance in Wheat (Triticum aestivum L.) Cultivars. J Plant Growth Regul 42, 4402–4422 (2023). https://doi.org/10.1007/s00344-023-10905-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-023-10905-4

Keywords

Navigation