Skip to main content
Log in

Highly sensitive Au–Fe2O3–Au and Fe2O3–Au–Fe2O3 biosensors utilizing strong surface plasmon resonance

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, two SPR biosensor configurations utilizing Fe2O3 layer coupled with Au thin film in the angular interrogation mode have been proposed and analyzed theoretically. The proposed configurations are prism—Au–Fe2O3–Au—sensing medium and prism—Fe2O3–Au–Fe2O3—sensing medium. The reflectivity was calculated as a function of incident angle based on Fresnel coefficients for transverse magnetic polarized light. The thicknesses of Au and Fe2O3 layers have been optimized to achieve the best performance of the sensor. The optimized sensitivities are 171.3 deg RIU−1 and 205.4 deg RIU−1 for the two configurations, respectively. The optimized two sensor configurations can be easily fabricated with high sensitivity than the many previously reported in the literature. Therefore, the proposed structures will find a broad range of applications in biomedical, label-free chemical and environmental protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X. Huang, S. Neretina, M.A. El-Sayed, Adv. Mater. 21, 4880–4910 (2009)

    Google Scholar 

  2. L.W. Chi, O. Malini, Plasmonics 9, 809–824 (2014)

    Google Scholar 

  3. C.M. Miyazaki, F.M. Shimizu, M. Ferreira, Nanocharacterization Techniques: Micro and Nano Technologies (William Andrew Publishing, Norwich, 2017), pp. 183–200

    Google Scholar 

  4. M. Zayed, A.M. Ahmed, M. Shaban, Int. J. Hydrog. Energy 44, 17630–17648 (2019)

    Google Scholar 

  5. M. Shaban, A.M. Ahmed, E. Abdel-Rahman, H. Hamdy, Micro. Nano Lett. 11, 295–298 (2016)

    Google Scholar 

  6. P.K. Maharana, R. Jha, Sens. Actuators B 169, 161–166 (2012)

    Google Scholar 

  7. M.E. Stewart, C.R. Anderton, L.B. Thompson, J. Maria, S.K. Gray, J.A. Rogers, R.G. Nuzzo, Chem. Rev. 108, 494–521 (2008)

    Google Scholar 

  8. L. Kyeong-Seok, S.L. Taek, K. Inho, M.K. Won, J Phys D: Appl. Phys. 46, 125302 (2013)

    Google Scholar 

  9. C. Nan-Fu, T. Yi-Chen, H. Teng-Yi, Sensors 14, 170–187 (2014)

    Google Scholar 

  10. E.F. Aust, M. Sawodny, S. Ito, W. Knoll, Scanning 16, 353–361 (1994)

    Google Scholar 

  11. M.A. Basyooni, A.M. Ahmed, M. Shaban, Optik 172, 1069–1078 (2018)

    ADS  Google Scholar 

  12. M. Shaban, A.M. Ahmed, E. Abdel-Rahman, H. Hamdy, Sci. Rep. 7, 41983 (2017)

    ADS  Google Scholar 

  13. J.M. Pitarke, V.M. Silkin, E.V. Chulkov, P.M. Echenique, Rep. Prog. Phys. 70, 1–87 (2007)

    ADS  Google Scholar 

  14. A.M. Ahmed, A. Mehaney, M. Shaban, A.H. Aly, Mater. Res. Exp. 6, 085073 (2019)

    Google Scholar 

  15. P. Mihaela, B. Camelia, Sensors 16, 870 (2016)

    Google Scholar 

  16. R.G. Hyuk, H.L. Seong, Mater. Trans. 51, 1150–1155 (2010)

    Google Scholar 

  17. S. Pranveer, Sens. Actuators B 229, 110–130 (2016)

    Google Scholar 

  18. J.A. Colin, G.K. Andrew, C.M. Ross, P.N. Nicolae-Alexandru, M. Daniel, Opt. Express 15, 8163–8169 (2007)

    Google Scholar 

  19. J.B. Maurya, Y.K. Prajapati, V. Singh, J.P. Saini, T. Rajeev, Opt. Quant. Electron 47, 3599–3611 (2015)

    Google Scholar 

  20. S. Zeng, S. Hub, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, K.-T. Yong, Sens. Actuators B 207, 801–810 (2015)

    Google Scholar 

  21. A. Hoggard, L.-Y. Wang, L. Ma, Y. Fang, G. You, J. Olson, Z. Liu, W.-S. Chang, P.M. Ajayan, S. Link, ACS Nano 7, 11209–11217 (2013)

    Google Scholar 

  22. S. Lee, M.H. Lee, H.-J. Shin, D. Choi, Nanotechnology 24, 275702 (2013)

    Google Scholar 

  23. L. Yang, T. Hu, R. Hao, C. Qiu, C. Xu, H. Yu, Y. Xu, X. Jiang, Y. Li, J. Yang, Opt. Lett. 38, 2512–2515 (2013)

    ADS  Google Scholar 

  24. S. Guo, S. Dong, J. Mater. Chem. 21, 18503–18516 (2011)

    Google Scholar 

  25. A.R. Ahmed, G.A. Mahdiraji, A. Rajib, M.C. Desmond, Y.M. Sua, Y.G. Shee, F.R.M. Adikan, IEEE Photon. J. 8, 4800408 (2016)

    Google Scholar 

  26. K.M. Pradeep, P. Punnag, J. Rajan, I.E.E.E. Photon, Technol. Lett. 25, 2156–2159 (2013)

    Google Scholar 

  27. Z. Wancheng, C. Xili, L. Xiaofei, Z. Liyun, H. Jia-Qi, P. Xianglan, Z. Qiang, Nanoscale Res. Lett. 8, 2 (2013)

    Google Scholar 

  28. X. Qingdong, F. Shanshan, R. Guojuan, C. Fang, J. Jingjie, Q. Fengyu, RSC Adv. 6, 55248–55256 (2016)

    Google Scholar 

  29. W.K.Y. Zhengcui, Z. Shudong, X. Yi, J. Phys. Chem. C 112, 11307–11313 (2008)

    Google Scholar 

  30. G. Yadan, G. Yiqin, W. Xuegang, L. Peng, K. Liuwei, W. Guanghui, L. Xiaomeng, L. Yunhai, Dalton Trans. 46, 14762–14770 (2017)

    Google Scholar 

  31. S. Changmin, C. Yanping, L. Hongmei, C. Guangliang, J. Lin, C. Li, RSC Adv. 6, 3514–3525 (2016)

    Google Scholar 

  32. C. Feng, L. Duanyang, D. Ruiping, H. Lijian, P. Daocheng, W. Jianmin, L. Song, RSC Adv. 5, 84587–84591 (2016)

    Google Scholar 

  33. L. Hualiang, L. Xiaohui, C. Yan, Z. Haiqian, T. Dongming, Z. Baoshan, J. Guangbin, D. Youwei, A.C.S. Appl, Mater. Interfaces 7, 4744–4750 (2015)

    Google Scholar 

  34. P. Saravanan, K. Jayamoorthy, S. Anandakumar, J. Lumin. 178, 241–248 (2016)

    Google Scholar 

  35. M. Ali, J. Kamal, H. Babak, B. Anna, B. Maryam, G.L. Salvatore, N. Giovanni, Nanomaterials 5, 737–749 (2015)

    Google Scholar 

  36. J. Pulit-Prociak, J. Chwastowski, M. Banach, J. Clust. Sci. 28, 1937–1954 (2017)

    Google Scholar 

  37. A. Rafiq, A. Min-Sang, H. Yoon-Bong, Adv. Mater. Interfaces 4, 1700691 (2017). (1 of 9)

    Google Scholar 

  38. B. Davide, M. Massimiliano, S. Giulietta, Z. Radek, S. Gabriella, V. Fabio, Biosens. Bioelectron. 45, 13–18 (2013)

    Google Scholar 

  39. C. Sumathi, P. Muthukumaran, P. Thivya, J. Wilson, G. Ravi, RSC Adv. 6, 81500–81509 (2016)

    Google Scholar 

  40. M. Thandavarayan, J. Sundaramurthy, P.S. Kumar, K. Palanisamy, O. Marcin, R. Seeram, Analyst 138, 1779–1786 (2013)

    Google Scholar 

  41. https://www.filmetrics.com/refractive-index-database. Accessed 1 Jan 2020

  42. http://www.res-tec.de/downloads.html. Accessed 1 Jan 2020

  43. P. Lecaruyer, E. Maillart, M. Canva, J. Rolland, Appl. Opt. 45, 8419–8423 (2006)

    ADS  Google Scholar 

  44. S. Heng, L. Zhiyi, W. Xiaoxiao, G. Jun, L. Le, L. Lin, G. Jihua, M. Hui, S. Shuqing, H. Yonghong, Sens. Actuators B 185, 91–96 (2013)

    Google Scholar 

  45. J. Rajan, K.S. Anuj, J. Opt A Pure Appl. Opt. 11, 045502 (2009)

    Google Scholar 

  46. M. Kashif, A.A. Bakar, N. Arsad, S. Shaari, Sensors 14, 15914–15938 (2014)

    Google Scholar 

  47. H.E.B.S.F. de BruijnAltenburg, R.P.H. Kooyman, J. Greve, Opt. Commun. 82, 425–432 (1991)

    ADS  Google Scholar 

  48. J. Homola, I. Koudela, S.S. Yee, Sens. Actuators B 54, 16–24 (1999)

    Google Scholar 

  49. O. Pluchery, R. Vayron, K.-M. Van, Eur. J. Phys. 32, 585–599 (2011)

    Google Scholar 

  50. H. Yao, S. Zhong, Opt. Express 22, 25149–25160 (2014)

    ADS  Google Scholar 

  51. P. Liqing, Z. Guomin, F. Chongfei, Q. Hong, W. Ping, W. Fengping, Z. Yue, Thin Solid Films 473, 163–167 (2005)

    Google Scholar 

  52. S. Mathur, V. Sivakov, H. Shen, S. Barth, C. Cavelius, A. Nilsson, P. Kuhn, Thin Solid Films 502, 88–93 (2006)

    ADS  Google Scholar 

  53. L. Jia, K. Harbauer, P. Bogdanoff, K. Ellmer, S. Fiechter, J. Mater. Sci. Technol. 31, 655–659 (2015)

    Google Scholar 

  54. S. Selvaraj, H. Moon, J.-Y. Yun, D.-H. Kim, Korean J. Chem. Eng. 33(12), 3516–3522 (2016)

    Google Scholar 

  55. N.K. Sharma, S. Yadav, V. Sajal, Opt. Commun. 318, 74–78 (2014)

    ADS  Google Scholar 

  56. C. Chung-Lim, A. Carlos, R.S. Flor, F. Sorin, Langmuir 33, 11257–11263 (2017)

    Google Scholar 

  57. P.G. Koutsoukos, W. Norde, J. Lyklema, J. Colloid Interface Sci. 95, 385–397 (1983)

    ADS  Google Scholar 

  58. C. Chen, D.-F. Lu, R. Gao, J. Cheng, Z.-M. Qi, Appl. Phys. Express 9, 062001 (2016)

    ADS  Google Scholar 

  59. J.S. Leif, C. Shih-Hui, C.S. George, P.V.D. Richard, Nano Lett. 5, 2034–2038 (2005)

    Google Scholar 

  60. K.C.W. Darran, J.L. Kwang, P. Vincent, T.K. Boris, J. Lightwave Technol. 31, 3500–3510 (2013)

    Google Scholar 

  61. M. El-Beheiry, V. Liu, S. Fan, O. Levi, Opt. Express 18, 22702–22714 (2010)

    ADS  Google Scholar 

  62. A.M. Ahmed, A. Mehaney, Sci. Rep. 9, 6973 (2019)

    ADS  Google Scholar 

  63. Y. Xu, Y.S. Ang, L. Wu, L.K. Ang, Nanomaterials 9(2), 165 (2019)

    ADS  Google Scholar 

  64. A.S. Kushwaha, A. Kumar, R. Kumar, S.K. Srivastava, Photonics Nanostruct. Fundam. Appl. 31, 99–106 (2018)

    ADS  Google Scholar 

  65. J.B. Maurya, Y.K. Prajapati, V. Singh, J.P. Saini, Appl. Phys. A 121, 525–533 (2015)

    ADS  Google Scholar 

  66. S. Chen, C. Lin, Appl. Phys. A 125(12), 230 (2019)

    ADS  Google Scholar 

  67. J.B. Maurya, A. François, Y.K. Prajapati, Sensors 18(3), 857 (2018)

    Google Scholar 

  68. M.S. Rahman, M.S. Anower, M.R. Hasan, M.B. Hossain, M.I. Haque, Opt. Commun. 396, 36–43 (2017)

    ADS  Google Scholar 

  69. Y. Huang, S. Zhong, Y. Shen, L. Yao, Y. Yu, D. Cui, IEEE Photonics J. 9(6), 5900911 (2017)

    Google Scholar 

  70. Y. Xu, C.-Y. Hsieh, L. Wu, L.K. Ang, J. Phys. D Appl. Phys. 52, 065101 (2019)

    ADS  Google Scholar 

  71. Z. Chen, X. Zhao, C. Lin, S. Chen, L. Yin, Y. Ding, Appl. Opt. 55(25), 6832–6835 (2016)

    ADS  Google Scholar 

  72. S.M. Gan, P.S. Menon, N.R. Mohamad, N.A. Jamil, B.Y. Majlis, Mater. Today Proc. 7, 668–674 (2019)

    Google Scholar 

  73. Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, K.-T. Yong, Sci. Rep. 6, 28190 (2016)

    ADS  Google Scholar 

  74. A. Verma, A. Prakash, R. Tripathi, Opt. Commun. 357, 106–112 (2015)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AMA devised the main ideas and performed numerical simulations. MS analyzed the data and discussed the results. All authors contributed to the final manuscript.

Corresponding author

Correspondence to Ashour M. Ahmed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 303 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, A.M., Shaban, M. Highly sensitive Au–Fe2O3–Au and Fe2O3–Au–Fe2O3 biosensors utilizing strong surface plasmon resonance. Appl. Phys. B 126, 57 (2020). https://doi.org/10.1007/s00340-020-7405-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-7405-7

Navigation