Skip to main content
Log in

SiO multi-line laser-induced fluorescence for quantitative temperature imaging in flame-synthesis of nanoparticles

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Silicon monoxide (SiO) is an intermediate in the gas-phase synthesis of SiO2 nanoparticles and coatings. We demonstrate a method for in situ imaging the gas-phase temperature via multi-line laser-induced fluorescence (LIF) using excitation in the A 1Π–X 1Σ+(0,0) band near 235 nm. A low-pressure lean (3 kPa, φ = 0.39) premixed hydrogen/oxygen flame was seeded with 210 ppm hexamethyldisiloxane (HMDSO) to produce SiO2 nanoparticles. Spectral regions with no interference from other species in the flame were located, and the excitation-spectral range that provides the best temperature sensitivity was determined from numerical experiments. Quenching rates of the selected transitions were also determined from fluorescence lifetime measurements, and found to be independent of the excited rotational state. Upon laser light-sheet excitation, images of fluorescence were recorded for a sequence of excitation wavelengths and pixel-wise multi-line fitting of the spectra yields temperature images. The results were compared against multi-line NO-LIF temperature imaging measurements using the A 2Σ+X 2Π(0,0) band near 225 nm from 500 ppm NO added to the gas flow as a thermometry target. Both methods show good qualitative agreement with each other and demonstrate that temperature can be evaluated from the zone in the reactor where SiO is naturally present without adding tracers. SiO LIF exhibited high signal-to-noise ratios of the order of ten times that of NO LIF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Strobel, S.E. Pratsinis, J. Mater. Chem. 17, 4743 (2007)

    Article  Google Scholar 

  2. M. Heurlin, M.H. Magnusson, D. Lindgren, M. Ek, L.R. Wallenberg, K. Deppert, L. Samuelson, Nature 492, 90 (2012)

    Article  ADS  Google Scholar 

  3. P. Roth, Proc. Combust. Inst. 31, 1773 (2007)

    Article  Google Scholar 

  4. S. Li, Y. Ren, P. Biswas, S.D. Tse, Progr. Energ. Combust. Sci. 55, 1 (2016)

    Article  Google Scholar 

  5. A. Gutsch, M. Krämer, G. Michael, H. Mühlenweg, M. Pridöhl, G. Zimmermann, KONA Powder Part J. 20, 24 (2002)

    Article  Google Scholar 

  6. M. Zachariah, D. Burgess, J. Aerosol. Sci. 25, 487 (1994)

    Article  Google Scholar 

  7. Q.L. Yan, M. Gozin, F.Q. Zhao, A. Cohen, S.P. Pang, Nanoscale 8, 4799 (2016)

    Article  ADS  Google Scholar 

  8. S. Kluge, L. Deng, O. Feroughi, F. Schneider, M. Poliak, A. Fomin, V. Tsionsky, S. Cheskis, I. Wlokas, I. Rahinov, T. Dreier, A. Kempf, H. Wiggers, C. Schulz, Cryst. Eng. Comm. 17, 6930 (2015)

    Article  Google Scholar 

  9. O.M. Feroughi, L. Deng, S. Kluge, T. Dreier, H. Wiggers, I. Wlokas, C. Schulz, Proc. Combust. Inst. 36, 1045 (2017)

    Article  Google Scholar 

  10. T. Dreier, C. Schulz, Powder Technol. 287, 226 (2016)

    Article  Google Scholar 

  11. R.S.M. Chrystie, E.F. Nasir, A. Farooq, Opt. Lett. 39, 6620 (2014)

    Article  ADS  Google Scholar 

  12. H. Teichert, T. Fernholz, V. Ebert, Appl. Opt. 42, 2043 (2003)

    Article  ADS  Google Scholar 

  13. J.Y. Hwang, Y.S. Gil, J.I. Kim, M. Choi, S.H. Chung, J. Aerosol Sci 32, 601 (2001)

    Article  Google Scholar 

  14. S. Roy, J.R. Gord, A.K. Patnaik, Prog. Energy Combust. Sci. 36, 280 (2010)

    Article  Google Scholar 

  15. R.S.M. Chrystie, I.S. Burns, C.F. Kaminski, Combust. Sci. Technol. 185, 180 (2013)

    Article  Google Scholar 

  16. M.D. Allendorf, J.R. Bautista, E. Potkay, J. Appl. Phys. 66, 5046 (1989)

    Article  ADS  Google Scholar 

  17. G.S. Elliott, N. Glumac, C.D. Carter, Meas. Sci. Technol 12, 452 (2001)

    Article  ADS  Google Scholar 

  18. D. Müller, R. Pagel, A. Burkert, V. Wagner, W. Paa Appl. Opt. 53, 1750 (2014)

    Article  ADS  Google Scholar 

  19. T. Dreier, R. Chrystie, T. Endres, C. Schulz Encyclopedia of Analytical Chemistry (Wiley, New Jersey, 2016), p. 1

    Google Scholar 

  20. W.G. Bessler, C. Schulz Appl. Phys. B Lasers Opt. 78, 519 (2004)

    Article  ADS  Google Scholar 

  21. H. Kronemayer, P. Ifeacho, C. Hecht, T. Dreier, H. Wiggers, C. Schulz, Appl. Phys. B 88, 373 (2007)

    Article  ADS  Google Scholar 

  22. C. Hecht, A. Abdali, T. Dreier, C. Schulz, Z. Phys. Chem 225, 1225 (2011)

    Article  Google Scholar 

  23. H. Kronemayer, W. Bessler, C. Schulz, Appl. Phys. B 81, 1071 (2005)

    Article  ADS  Google Scholar 

  24. T. Lee, W.G. Bessler, H. Kronemayer, C. Schulz, J.B. Jeffries Appl. Opt. 31, 6718 (2005)

    Article  ADS  Google Scholar 

  25. E. Malmqvist, M. Jonsson, K. Larsson, M. Aldén, J. Bood, Combust. Flame 169, 297 (2016)

    Article  Google Scholar 

  26. Z. Yin, C.D. Carter, W.R. Lempert, Appl. Phys. B 117, 707 (2014)

    Article  Google Scholar 

  27. N.G. Glumac, Combust. Flame 125, 702 (2001)

    Article  Google Scholar 

  28. R. Buss, P. Ho, M.E. Weber, Plasma. Chem. Plasma Process. 13, 61 (1993)

    Article  Google Scholar 

  29. A. Hynes, Chem. Phys. Lett. 181, 237 (1991)

    Article  ADS  Google Scholar 

  30. H.C. Le, R.W. Dreyfus, W. Marine, M. Sentis, I.A. Movtchan, Appl. Surf. Sci. 96, 164 (1996)

    Article  ADS  Google Scholar 

  31. P. Van de Weijer, B.H. Zwerver, Chem. Phys. Lett. 163, 48 (1989)

    Article  ADS  Google Scholar 

  32. R. Yamashiro, Y. Matsumoto, K. Honma, J. Chem. Phys. 128, 084308 (2008)

    Article  ADS  Google Scholar 

  33. D. Lindackers, M.G.D. Strecker, P. Roth, C. Janzen, S.E. Pratsinis, Combust. Sci. Technol. 123, 287 (1997)

    Article  Google Scholar 

  34. C. Schulz, V. Sick, J. Heinze, W. Stricker, Appl. Opt. 36, 3227 (1997)

    Article  ADS  Google Scholar 

  35. K.P. Huber, G. Herzberg NIST Chemistry WebBook, Standard Reference Database Number 69 (2016)

  36. M.C. Drake, J.W. Ratcliffe, J. Chem. Phys. 98, 3850 (1993)

    Article  ADS  Google Scholar 

  37. S.R. Langhoff, J.O. Arnold, J. Chem. Phys. 70, 852 (1979)

    Article  ADS  Google Scholar 

  38. C.M. Western, J. Quant. Spectros. Rad. Transf. 186, 221 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Funding by the German Research Foundation (DFG) within FOR2284 and the project DR 195/17 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin S. M. Chrystie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chrystie, R.S.M., Feroughi, O.M., Dreier, T. et al. SiO multi-line laser-induced fluorescence for quantitative temperature imaging in flame-synthesis of nanoparticles. Appl. Phys. B 123, 104 (2017). https://doi.org/10.1007/s00340-017-6692-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6692-0

Keywords

Navigation