Skip to main content
Log in

Two-photon luminescence contrast by tip-sample coupling in femtosecond near-field optical microscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We investigate the role of tip-sample interaction in nonlinear optical scanning near-field microscopy. The experiment was performed by tightly focusing femtosecond laser pulses onto a sharp gold tip that was positioned in close proximity to the surface of a sample with gold nanostructures on a Si-substrate by shear force feedback. The nonlinear optical signal consists of two-photon photoluminescence and second harmonic signal from the gold tip and the gold nanostructures. These signals can be used to characterize different coupling parameters such as geometry, material and width of the tip-sample gap and enable to reveal the mechanism responsible for the image contrast. Under the excitation with 776-nm and 110-fs laser pulses nonlinear imaging is almost background free and yields super resolution showing features with dimensions significantly below the diffraction limit with a signal intensity following quadratic excitation power law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.W. Hell, J. Wichmann, Opt. Lett. 19, 780 (1994)

    Article  ADS  Google Scholar 

  2. M.G.L. Gustafsson, Proc. Natl. Acad. Sci. 102, 13081 (2005)

    Article  ADS  Google Scholar 

  3. E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, H.F. Hess, Science 313, 1642 (2006)

    Article  ADS  Google Scholar 

  4. M.J. Rust, M. Bates, X. Zhuang, Nat. Methods 3, 793 (2006)

    Article  Google Scholar 

  5. U. Dürig, D.W. Pohl, F. Rohner, J. Appl. Phys. 59, 3318 (1986)

    Article  ADS  Google Scholar 

  6. Z. Yang, J. Aizpurua, H. Xu, J. Raman Spectrosc. 40, 1343 (2009)

    Article  ADS  Google Scholar 

  7. P. Vasa, C. Ropers, R. Pomraenke, and C. Lienau, Laser Photon. Rev. 3, 483 (2009)

    Article  Google Scholar 

  8. R.M. Stöckle, Y.D. Suh, V. Deckert, R. Zenobi, Chem. Phys. Lett. 318, 131 (2000)

    Article  ADS  Google Scholar 

  9. R. Zhang, Y. Zhang, Z.C. Dong, S. Jiang, C. Zhang, L.G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J.L. Yang, J.G. Hou, Nature 498, 82 (2013)

    Article  ADS  Google Scholar 

  10. M.S. Anderson, Appl. Phys. Lett. 76, 3130 (2000)

    Article  ADS  Google Scholar 

  11. K. Braun, X. Wang, A.M. Kern, H. Adler, H. Peisert, T. Chassé, D. Zhang, A.J. Meixner, Beilstein J. Nanotechnol. 6, 1100 (2015)

    Article  Google Scholar 

  12. K.F. Domke, D. Zhang, B. Pettinger, J. Am, Chem. Soc. 129, 6708 (2007)

    Article  Google Scholar 

  13. X. Wang, K. Braun, D. Zhang, H. Peisert, H. Adler, T. Chassé, and A. J. Meixner, ACS Nano 9, 8176 (2015)

    Article  Google Scholar 

  14. E. Bailo, V. Deckert, Angew. Chem. Int. Edit. 47, 1658 (2008)

    Article  Google Scholar 

  15. P. Reichenbach, A. Horneber, D.A. Gollmer, A. Hille, J. Mihaljevic, C. Schäfer, D.P. Kern, A.J. Meixner, D. Zhang, M. Fleischer, L.M. Eng, Opt. Expr. 22, 15484 (2014)

    Article  ADS  Google Scholar 

  16. J.D. Bhawalkar, G.S. He, P.N. Prasad, Rep. Progr. Phys. 59, 1041 (1996)

    Article  ADS  Google Scholar 

  17. S. Kawata, P. Verma, Chimia 60, A770 (2006)

    Article  Google Scholar 

  18. T. Züchner, A.V. Failla, A.J. Meixner, Angew. Chem. Int. Edit. 50, 5274 (2011)

    Article  Google Scholar 

  19. S. Quabis, R. Dorn, G. Leuchs, Appl. Phys. B 81, 597 (2005)

    Article  ADS  Google Scholar 

  20. K. Karrai, R.D. Grober, Appl. Phys. Lett. 66, 1842 (1995)

    Article  ADS  Google Scholar 

  21. F. Burmeister, C. Schäfle, B. Keilhofer, C. Bechinger, J. Boneberg, P. Leiderer, Adv. Mater. 10, 495 (1998)

    Article  Google Scholar 

  22. U.C. Fischer, H.P. Zingsheim, J. Vac. Sci. Technol. 19, 881 (1981)

    Article  ADS  Google Scholar 

  23. L.E. Hennemann, A. Kolloch, A. Kern, J. Mihaljevic, J. Boneberg, P. Leiderer, A.J. Meixner, D. Zhang, Beilstein J. Nanotechnol. 3, 674 (2012)

    Article  Google Scholar 

  24. A. Horneber, K. Braun, J. Rogalski, P. Leiderer, A. J. Meixner, and D. Zhang, Phys. Chem. Chem. Phys. 17, 21288 (2015)

    Article  Google Scholar 

  25. E. Dulkeith, T. Niedereichholz, T.A. Klar, J. Feldmann, G. von Plessen, D.I. Gittins, K.S. Mayya, F. Caruso, Phys. Rev. B 70, 205424 (2004)

    Article  ADS  Google Scholar 

  26. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, G.P. Wiederrecht, Phys. Rev. Lett. 95, 267405 (2005)

    Article  ADS  Google Scholar 

  27. K. Imura, T. Nagahara, H. Okamoto, J. Phys. Chem. B 109, 13214 (2005)

    Article  Google Scholar 

  28. K. Imura, H. Okamoto, J. Phys. Chem. C 113, 11756 (2009)

    Article  Google Scholar 

  29. M.D. Wissert, K.S. Ilin, M. Siegel, U. Lemmer, H.J. Eisler, Nanoscale 2, 1018 (2010)

    Article  ADS  Google Scholar 

  30. S. Link, C. Burda, Z.L. Wang, M.A. El-Sayed, J. Chem. Phys. 111, 1255 (1999)

    Article  ADS  Google Scholar 

  31. X.-F. Jiang, Y. Pan, C. Jiang, T. Zhao, P. Yuan, T. Venkatesan, Q.-H. Xu, J. Phys. Chem. Lett. 4, 1634 (2013)

    Article  Google Scholar 

  32. A. Tcherniak, S. Dominguez-Medina, W.-S. Chang, P. Swanglap, L.S. Slaughter, C.F. Landes, S. Link, J. Phys. Chem. C 115, 15938 (2011)

    Article  Google Scholar 

  33. F. Wackenhut, A.V. Failla, A.J. Meixner, J. Phys. Chem. C 117, 17870 (2013)

    Article  Google Scholar 

  34. Y. Fang, W.-S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, S. Link, ACS Nano 6, 7177 (2012)

    Article  Google Scholar 

  35. K. Karrai, I. Tiemann, Phys. Rev. B 62, 13174 (2000)

    Article  ADS  Google Scholar 

  36. M. Leuschner, M. Schüttler, H. Giessen, J. Microsc. 202, 176 (2001)

    Article  MathSciNet  Google Scholar 

  37. R. Hillenbrand, F. Keilmann, Phys. Rev. Lett. 85, 3029 (2000)

    Article  ADS  Google Scholar 

  38. F. Keilmann, R. Hillenbrand, Philos. Trans. A Math. Phys. Eng. 362, 787 (2004)

    Article  ADS  Google Scholar 

  39. C. Ropers, C.C. Neacsu, T. Elsaesser, M. Albrecht, M.B. Raschke, C. Lienau, Nano Lett. 7, 2784 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge for financing of the Deutsche Forschungsgemeinschaft priority program (SPP 1391) and the Institutional Strategy of the University of Tübingen (Deutsche Forschungsgemeinschaft, ZUK 63). We thank Prof. P. Leiderer, Konstanz for supplying the sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anke Horneber.

Additional information

This article is part of the topical collection “Ultrafast Nanooptics” guest edited by Martin Aeschlimann and Walter Pfeiffer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horneber, A., Wackenhut, F., Braun, K. et al. Two-photon luminescence contrast by tip-sample coupling in femtosecond near-field optical microscopy. Appl. Phys. B 123, 49 (2017). https://doi.org/10.1007/s00340-016-6610-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6610-x

Keywords

Navigation