Skip to main content
Log in

A single-ion trap with minimized ion–environment interactions

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a new single-ion endcap trap for high-precision spectroscopy that has been designed to minimize ion–environment interactions. We describe the design in detail and then characterize the working trap using a single trapped \(^{171}{\rm Yb}^{+}\) ion. Excess micromotion has been eliminated to the resolution of the detection method, and the trap exhibits an anomalous phonon heating rate of \(d\langle n\rangle /{\mathrm{d}}t = 24 ^{+30}_{-24}\,{\rm s}^{-1}\). The thermal properties of the trap structure have also been measured with an effective temperature rise at the ion’s position of \({\Delta }T_{\mathrm{(ion)}} = 0.14 \pm 0.14\,{\rm K}\). The small perturbations to the ion caused by this trap make it suitable to be used for an optical frequency standard with fractional uncertainties below the \(10^{-18}\) level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. High SRF SMD components (X7R dielectric) ensure good performance in the 1–10 MHz range.

  2. R = 100 k\({\varOmega }\), C = 100 nF, L = 22 \(\upmu\)H (Coilcraft 1812CS).

  3. Poles at 10 Hz and 100 kHz, respectively.

  4. NKT LMA-PM-5.

  5. NA = 0.40, Filter Transmission T = 92 %, PMT Q.E. = 27 %

References

  1. R.M. Godun, P.B.R. Nisbet-Jones, J.M. Jones, S.A. King, L.A.M. Johnson, H.S. Margolis, K. Szymaniec, S.N. Lea, K. Bongs, P. Gill, Frequency ratio of two optical clock transitions in \(^{171}\)Yb\(^{+}\) and constraints on the time-variation of fundamental constants. Phys. Rev. Lett. 113, 210801 (2014)

    Article  ADS  Google Scholar 

  2. N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, E. Peik, Improved limit on a temporal variation of m\(_{p}\)/m\(_{e}\) from comparisons of Yb\(^{+}\) and Cs atomic clocks. Phys. Rev. Lett. 113, 210802 (2014)

    Article  ADS  Google Scholar 

  3. L.W. Wansbeek, B.K. Sahoo, R.G.E. Timmermans, K. Jungmann, B.P. Das, D. Mukherjee, Atomic parity nonconservation in Ra\(^{+}\). Phys. Rev. A 78, 050501(R) (2008)

    Article  ADS  Google Scholar 

  4. R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt, C.F. Roos, Quantum simulation of the Dirac equation. Nature 463, 68 (2010)

    Article  ADS  Google Scholar 

  5. N.C. Menicucci, G.J. Milburn, Single trapped ion as a time-dependent harmonic oscillator. Phys. Rev. A 76, 052105 (2007)

    Article  ADS  Google Scholar 

  6. D. Hucul, I.V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S.M. Clark, C. Monroe, Modular entanglement of atomic qubits using both photons and phonons. Nat. Phys. 11, 37 (2015)

    Article  Google Scholar 

  7. M. Gessner, M. Ramm, T. Pruttivarasin, a Buchleitner, H.P. Breuer, H. Häffner, Local detection of quantum correlations with a single trapped ion. Nat. Phys. 10, 105 (2014)

    Article  Google Scholar 

  8. M. Brownnutt, M. Kumph, P. Rabl, R. Blatt, Ion-trap measurements of electric-field noise near surfaces. arXiv, 1409.6572 (2014)

  9. P. Dubé, A. Madej, Z. Zhou, J. Bernard, Evaluation of systematic shifts of the \(^{88}\)Sr\(^{+}\) single-ion optical frequency standard at the \(10^{-17}\) level. Phys. Rev. A 87, 023806 (2013)

    Article  ADS  Google Scholar 

  10. E. Peik, T. Schneider, C. Tamm, Laser frequency stabilization to a single ion. J. Phys. B: At. Mol. Opt. Phys. 39, 145–158 (2006)

    Article  ADS  Google Scholar 

  11. C.A. Schrama, E. Peik, W.W. Smith, H. Walther, Novel miniature ion traps. Opt. Commun. 101, 32–36 (1993)

    Article  ADS  Google Scholar 

  12. A. Madej, P. Dubé, Z. Zhou, J.E. Bernard, M. Gertsvolf, \(^{88}\)Sr\(^{+}\) 445-THz single-ion reference at the \(10^{-17}\) level via control and cancellation of systematic uncertainties and its measurement against the SI second. Phys. Rev. Lett. 109, 203002 (2012)

    Article  ADS  Google Scholar 

  13. H. Takahashi, A. Wilson, A. Riley-Watson, F. Oručević, N. Seymour-Smith, M. Keller, W. Lange, An integrated fiber trap for single-ion photonics. N. J. Phys. 15, 053011 (2013)

    Article  Google Scholar 

  14. Q.A. Turchette, D. Kielpinski, B.E. King, D. Leibfried, D.M. Meekhof, C.J. Myatt, M.A. Rowe, C.A. Sackett, C.S. Wood, W.M. Itano, C. Monroe, D.J. Wineland, Heating of trapped ions from the quantum ground state. Phys. Rev. A 61, 063418 (2000)

    Article  ADS  Google Scholar 

  15. M. Ordal, R. Bell, R. Alexander, L. Newquist, M. Querry, Optical properties of Al, Fe, Ti, Ta, W, Mo, at submillimeter wavelengths. Appl. Opt. 27, 1203–1209 (1988)

    Article  ADS  Google Scholar 

  16. D. Hite, Y. Colombe, A. Wilson, K. Brown, U. Warring, R. Jordens, J. Jost, K. McKay, D. Pappas, D. Leibfried, D. Wineland, 100-fold reduction of electric-field noise in an ion trap cleaned with in situ argon-ion-beam bombardment. Phys. Rev. Lett. 109, 103001 (2012)

    Article  ADS  Google Scholar 

  17. D.J. Berkeland, M.G. Boshier, Destabilization of dark states and optical spectroscopy in Zeeman-degenerate atomic systems. Phys. Rev. A 65, 033413 (2002)

    Article  ADS  Google Scholar 

  18. N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C. Tamm, E. Peik, High-accuracy optical clock based on the octupole transition in \(^{171}\)Yb\(^{+}\). Phys. Rev. Lett. 108, 090801 (2012)

    Article  ADS  Google Scholar 

  19. C.W. Chou, D.B. Hume, J.C.J. Koelemeij, D.J. Wineland, T. Rosenband, Frequency comparison of two high-accuracy Al\(^{+}\) optical clocks. Phys. Rev. Lett. 104, 070802 (2010)

    Article  ADS  Google Scholar 

  20. J. Keller, H.L. Partner, T. Burgermeister, T.E. Mehlstaubler, Precise determination of micromotion for trapped-ion optical clocks. J. Appl. Phys. 118, 104501 (2015)

    Article  ADS  Google Scholar 

  21. M. Harlander, M. Brownnutt, W. Hänsel, R. Blatt, Trapped-ion probing of light-induced charging effects on dielectrics. N. J. Phys. 12, 093035 (2010)

    Article  Google Scholar 

  22. J. Wesenberg, R. Epstein, D. Leibfried, R. Blakestad, J. Britton, J. Home, W. Itano, J. Jost, E. Knill, C. Langer, R. Ozeri, S. Seidelin, D. Wineland, Fluorescence during Doppler cooling of a single trapped atom. Phys. Rev. A 76, 053416 (2007)

    Article  ADS  Google Scholar 

  23. R.J. Epstein, S. Seidelin, D. Leibfried, J.H. Wesenberg, J.J. Bollinger, J.M. Amini, R.B. Blakestad, J.B. Britton, J.P. Home, W.M. Itano, J.D. Jost, E. Knill, C. Langer, R. Ozeri, N. Shiga, D.J. Wineland, Simplified motional heating rate measurements of trapped ions. Phys. Rev. A 76, 033411 (2007)

    Article  ADS  Google Scholar 

  24. V. Letchumanan, P. Gill, E. Riis, A.G. Sinclair, Optical Ramsey spectroscopy of a single trapped \(^{88}\)Sr\(^{+}\) ion. Phys. Rev. A 70, 033419 (2004)

    Article  ADS  Google Scholar 

  25. M. Doležal, P. Balling, P.B.R. Nisbet-Jones, S.A. King, J.M. Jones, H.A. Klein, P. Gill, T. Lindvall, A.E. Wallin, M. Merimaa, C. Tamm, C. Sanner, N. Huntemann, N. Scharnhorst, I.D. Leroux, P.O. Schmidt, T. Burgermeister, T.E. Mehlstäubler, E. Peik, Analysis of thermal radiation in ion traps for optical frequency standards. Metrologia 52, 842 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was funded by the European Metrology Research Programme (EMRP), the UK National Measurement System, and the European Space Agency (ESA). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. R. Nisbet-Jones.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nisbet-Jones, P.B.R., King, S.A., Jones, J.M. et al. A single-ion trap with minimized ion–environment interactions. Appl. Phys. B 122, 57 (2016). https://doi.org/10.1007/s00340-016-6327-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6327-x

Keywords

Navigation