Skip to main content
Log in

Quantum control of qubits and atomic motion using ultrafast laser pulses

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Pulsed lasers offer significant advantages over continuous wave (CW) lasers in the coherent control of qubits. Here we review the theoretical and experimental aspects of controlling the internal and external states of individual trapped atoms with pulse trains. Two distinct regimes of laser intensity are identified. When the pulses are sufficiently weak that the Rabi frequency Ω is much smaller than the trap frequency ω trap, sideband transitions can be addressed and atom-atom entanglement can be accomplished in much the same way as with CW lasers. By contrast, if the pulses are very strong Ωω trap, impulsive spin-dependent kicks can be combined to create entangling gates which are much faster than a trap period. These fast entangling gates should work outside of the Lamb-Dicke regime and be insensitive to thermal atomic motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. T. Udem, R. Holzwarth, T.W. Hansch, Nat. Biotechnol. 416, 233 (2002)

    Article  ADS  Google Scholar 

  2. S. Cundiff, J. Ye, Rev. Mod. Phys. 75, 325 (2003)

    Article  ADS  Google Scholar 

  3. J.L. Hall, Rev. Mod. Phys. 78, 1279 (2006)

    Article  ADS  Google Scholar 

  4. J.L. Hall, Rev. Mod. Phys. 78, 1279 (2006)

    Article  ADS  Google Scholar 

  5. M.C. Stowe, A. Pe’er, J. Ye, Phys. Rev. Lett. 100, 203001 (2008)

    Article  ADS  Google Scholar 

  6. M. Viteau, A. Chotia, M. Allegrini, N. Bouloufa, O. Dulieu, D. Comparat, P. Pillet, Sci. Agric.321, 232 (2008)

    Article  ADS  Google Scholar 

  7. D. Press, K.D. Greve, P.L. McMahon, T.D. Ladd, B. Friess, C. Schneider, M. Kamp, S. H"ofling, A. Forchel, Y. Yamamoto, Nat. Photonics. 4, 367 (2010)

    Article  ADS  Google Scholar 

  8. A. Greilich, D.R. Yakovlev, A. Shabaev, A.L. Efros, I.A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, M. Bayer, Sci. Agric. 313, 341 (2006)

    Article  ADS  Google Scholar 

  9. D. Hayes, D.N. Matsukevich, P. Maunz, D. Hucul, Q. Quraishi, S. Olmschenk, W.C. Campbell, J. Mizrahi, C. Senko, C. Monroe, Phys. Rev. Lett. 104, 140501 (2010)

    Article  ADS  Google Scholar 

  10. W.C. Campbell, J. Mizrahi, Q. Quraishi, C. Senko, D. Hayes, D. Hucul, D.N. Matsukevich, P. Maunz, C. Monroe, Phys. Rev. Lett. 105, 090502 (2010)

    Article  ADS  Google Scholar 

  11. J. Mizrahi, C. Senko, B. Neyenhuis, K.G. Johnson, W.C. Campbell, C.W.S. Conover, C. Monroe, Phys. Rev. Lett. 110, 203001 (2013)

    Article  ADS  Google Scholar 

  12. R. Blatt, D. Wineland, Nat. Biotechnol. 453, 1008 (2008)

    Article  ADS  Google Scholar 

  13. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Nat. Biotechnol. 464, 45 (2010)

    Article  ADS  Google Scholar 

  14. C.A. Sackett, D. Kielpinski, B.E. King, C. Langer, V. Meyer, C.J. Myatt, M. Rowe, Q.A. Turchette, W.M. Itano, D.J. Wineland, C. Monroe, Nat. Biotechnol. 404, 256 (2000)

    Article  ADS  Google Scholar 

  15. H. Haffner, W. Hansel, C.F. Roos, J. Benhelm, D.C. al kar, M. Chwalla, T. Korber, U.D. Rapol, M. Riebe, P.O. Schmidt, C. Becher, O. Guhne, W. Dur, R. Blatt, Nat. Biotechnol. 438, 643 (2005)

    Article  ADS  Google Scholar 

  16. P.C. Haljan, P.J. Lee, K.-A. Brickman, M. Acton, L. Deslauriers, C. Monroe, Phys. Rev. A 72, 062316 (2005)

    Article  ADS  Google Scholar 

  17. T. Monz, P. Schindler, J.T. Barreiro, M. Chwalla, D. Nigg, W.A. Coish, M. Harlander, W. H"ansel, M. Hennrich, R. Blatt, Phys. Rev. Lett. 106, 130506 (2011)

    Article  ADS  Google Scholar 

  18. R. Islam, E.E. Edwards, K. Kim, S. Korenblit, C. Noh, H. Carmichael, G.-D. Lin, L.-M. Duan, C.-C.J. Wang, J.K. Freericks, C. Monroe, Nat. Commun. 2, 377 (2011)

    Article  ADS  Google Scholar 

  19. J.T. Barreiro, M. Muller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C.F. Roos, P. Zoller, R. Blatt, Nat. Biotechnol. 470, 486 (2011)

    Article  ADS  Google Scholar 

  20. A. Friedenauer, H. Schmitz, J.T. Glueckert, D. Porras, T. Schaetz, Nat. Phys. 4, 747 (2008)

    Article  Google Scholar 

  21. S. Gulde, M. Riebe, G.P.T. Lancaster, C. Becher, J. Eschner, H. Haffner, F. Schmidt-Kaler, I.L. Chuang, R. Blatt, Nat. Biotechnol. 421, 48 (2003)

    Article  ADS  Google Scholar 

  22. K.-A. Brickman, P.C. Haljan, P.J. Lee, M. Acton, L. Deslauriers, C. Monroe, Phys. Rev. A 72, 050306 (2005)

    Article  ADS  Google Scholar 

  23. P. Schindler, J.T. Barreiro, T. Monz, V. Nebendahl, D. Nigg, M. Chwalla, M. Hennrich, R. Blatt, Sci. Agric. 332, 1059 (2011)

    Article  ADS  Google Scholar 

  24. R. Ozeri, C. Langer, J.D. Jost, B. DeMarco, A. Ben-Kish, B.R. Blakestad, J. Britton, J. Chiaverini, W.M. Itano, D.B. Hume, D. Leibfried, T. Rosenband, P.O. Schmidt, D.J. Wineland, Phys. Rev. Lett. 95, 030403 (2005)

    Article  ADS  Google Scholar 

  25. R. Ozeri, W.M. Itano, R.B. Blakestad, J. Britton, J. Chiaverini, J.D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J.H. Wesenberg, D.J. Wineland, Phys. Rev. A 75, 042329 (2007)

    Article  ADS  Google Scholar 

  26. Q.A. Turchette, Kielpinski, B.E. King, D. Leibfried, D.M. Meekhof, C.J. Myatt, M.A. Rowe, C.A. Sackett, C.S. Wood, W.M. Itano, C. Monroe, D.J. Wineland, Phys. Rev. A 61, 063418 (2000)

    Article  ADS  Google Scholar 

  27. K. Mølmer, A. Sørensen, Phys. Rev. Lett. 82, 1835 (1999)

    Article  ADS  Google Scholar 

  28. G. Milburn, S. Schneider, D. James, Fortschr. Phys. 48, 801 (2000)

    Article  Google Scholar 

  29. W.K. Hensinger, S. Olmschenk, D. Stick, D. Hucul, M. Yeo, M. Acton, L. Deslauriers, C. Monroe, Appl. Phys. Lett. 88, 034101 (2006)

    Article  ADS  Google Scholar 

  30. J.P. Home, D. Hanneke, J.D. Jost, J.M. Amini, D. Leibfried, D.J. Wineland, Sci. Agric. 325, 1227 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. C. Ospelkaus, U. Warring, Y. Colombe, K.R. Brown, J.M. Amini, D. Leibfried, D.J. Wineland, Nat. Biotechnol. 476, 181 (2011)

    Article  ADS  Google Scholar 

  32. S. Olmschenk, D.N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, C. Monroe, Sci. Agric. 323, 486 (2009)

    Article  ADS  Google Scholar 

  33. S. Olmschenk, K.C. Younge, D.L. Moehring, D.N. Matsukevich, P. Maunz, C. Monroe, Phys. Rev. A 76, 052314 (2007)

    Article  ADS  Google Scholar 

  34. J.F. Poyatos, J.I. Cirac, R. Blatt, P. Zoller, Phys. Rev. A 54, 1532 (1996)

    Article  ADS  Google Scholar 

  35. A. Siegman, Lasers University Science Books. Sausalito, CA (1986)

  36. N. Rosen, C. Zener, Phys. Rev. 40, 502 (1932)

    Article  ADS  MATH  Google Scholar 

  37. N.V. Vitanov, P.L. Knight, Phys. Rev. A 52 2245 (1995)

    Article  ADS  Google Scholar 

  38. R.T. Robiscoe, Phys. Rev. A 17, 247(1978)

    Article  ADS  Google Scholar 

  39. J. Mizrahi, Ph.D. thesis, University of Maryland, College Park (2013)

  40. R. Islam, Ph.D. thesis, University of Maryland, College Park (2012)

  41. R. Glauber, Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  42. P. Kapitza, P. Dirac, Math. Proc. Camb. Phil. Soc. 29, 297 (1933)

    Article  ADS  Google Scholar 

  43. R.E. Sapiro, R. Zhang, G. Raithel, Phys. Rev. A 79, 043630 (2009)

    Article  ADS  Google Scholar 

  44. P.L. Gould, G.A. Ruff, D.E. Pritchard, Phys. Rev. Lett. 56, 827 (1986)

    Article  ADS  Google Scholar 

  45. J.-A. Currivan, A. Ullah, M. Hoogerland, EPL 85, 30005 (2009)

    Article  ADS  Google Scholar 

  46. D. Leibfried, D.M. Meekhof, B.E. King, C. Monroe, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 77, 4281 (1996)

    Article  ADS  Google Scholar 

  47. A. Sorensen, K. Molmer, Phys. Rev. Lett. 82, 1971 (1999)

    Article  ADS  Google Scholar 

  48. J.J. Garcia-Ripoll, P. Zoller, J.I. Cirac, Phys. Rev. Lett. 91, 157901 (2003)

    Article  ADS  Google Scholar 

  49. L.-M. Duan, Phys. Rev. Lett. 93, 100502 (2004)

    Article  ADS  Google Scholar 

  50. A. Luis, J. Phys J. Phys. A: Math. Gen. 34, 7677 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  51. X. Wang, P. Zanardi, Phys. Rev. A 65, 032327 (2002)

    Article  Google Scholar 

  52. C.D.B. Bentley, A.R.R. Carvalho, D. Kielpinski, J.J. Hope, New. J. Phys. 15, 043006 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the US Army Research Office with funding from the DARPA OLE program, IARPA, and the MURI program; the NSF PIF Program; the NSF Physics Frontier Center at JQI; and the European Commission AQUTE program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mizrahi.

Appendix: Motional evolution operator with nonzero pulse duration

Appendix: Motional evolution operator with nonzero pulse duration

In Sect. 3, Eq.  35 was derived by approximating the pulse as a δ-function. This section examines the validity of that approximation. The pulse duration is of order 10 ps, meaning it is several orders of magnitude faster than the trap frequency or the AOM frequency. Therefore, the Rosen-Zener solution in Sect. 2 can be used, with \(\theta\rightarrow\theta\sin\left(\Updelta k \hat{x} + \phi\right)\) in Eqs. 5 and 6:

$$A = \frac{\varGamma^2\left(\xi\right)}{\varGamma\left(\xi-\frac{\theta}{2\pi}\sin\left(\Updelta k \hat{x} + \phi\right)\right)\varGamma\left(\xi+\frac{\theta}{2\pi}\sin\left(\Updelta k \hat{x} + \phi\right)\right)}$$
(62)
$$B = -\sin\left(\frac{\theta}{2}\sin\left(\Updelta k \hat{x} + \phi\right)\right) \hbox{sech}\left(\frac{\omega_q T_p}{2}\right)$$
(63)

The \(\hat{\sigma}_x\) term in part of Eq. 4 is given by iB, which can be expanded using the Jacobi-Anger expansion as:

$$iB = \hbox{sech}\left(\frac{\omega_q T_p}{2}\right)\sum_{\hbox{odd}n = -\infty}^{\infty} e^{in\phi} J_n(\theta)D\left[in\eta\right]$$
(64)

This is nearly identical to the \(\hat{\sigma}_x\) term in Eq. 35, but with an overall \(\hbox{sech}\left(\omega_q T_p/2\right)\) term modifying the populations. The even-order diffraction terms are of order θ 2 or higher, which were assumed to be negligible in Sect. 3. Nonzero pulse duration can thus be accounted for by replacing \(\theta\rightarrow\theta \hbox{sech}\left(\omega_q T_p/2\right)\). This will correspond to a slight reduction in the effective pulse area as compared to a δ-function pulse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizrahi, J., Neyenhuis, B., Johnson, K.G. et al. Quantum control of qubits and atomic motion using ultrafast laser pulses. Appl. Phys. B 114, 45–61 (2014). https://doi.org/10.1007/s00340-013-5717-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5717-6

Keywords

Navigation